Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Factos & Números
000
Apresentação

Centro de Telecomunicações e Multimédia

A nossa visão é promover um mundo animado e sustentável onde a inteligência em rede permite uma interação ubíqua com o conteúdo sensorial. A missão é desenvolver sistemas e tecnologias avançadas para permitir comunicações de alta capacidade, eficientes e seguras, extração de conhecimento dos média e aplicações multimédia ubíquas imersivas.

No CTM trabalhamos em quatro áreas principais de investigação: Tecnologias Óticas e Eletrónicas, Redes Sem Fios, Tecnologias Multimédia e de Comunicações, e Processamento de Informação e Reconhecimento de Padrões.

Últimas Notícias
Comunicações

É possível tornar visível o invisível através de uma demonstração? Com o INESC TEC sim, através de realidade mista

O INESC TEC esteve em destaque num dos maiores encontros de especialistas que trabalham na área do 5G, IoT e 6G. Na EuCNC & 6G Summit 2025, que este ano se realizou em Poznan, na Polónia, o Instituto tornou visível o invisível através de uma demonstração com realidade mista.

26 junho 2025

Será que o vinho do Douro que temos à mesa é mesmo do Douro? O INESC TEC tem tecnologia para termos a certeza

O vinho de Portugal, o mel de Espanha, o azeite da Grécia, a carne da Alemanha, os lacticínios e pescado nórdicos: o que têm em comum? Estão todos ligados pelo WATSON, o projeto que traz para cima desta mesa tecnologias blockchain, inteligência artificial, visão computacional, sensores e sistemas de geolocalização para aumentar a rastreabilidade de produtos alimentares e contribuir para aumentar a informação, prevenção e combate à fraude.

29 maio 2025

Comunicações

Fábricas mais seguras e inteligentes? INESC TEC na linha da frente no desenvolvimento de tecnologias de transformação digital do setor industrial

Chama-se MechEye o projeto que está a desenvolver tecnologias que têm como objetivo aumentar a segurança em ambientes industriais, nomeadamente no que se refere à utilização e operação de equipamentos.

26 maio 2025

INESC TEC com 5 projetos exploratórios FCT aprovados em 4 áreas de I&D

Telecomunicações e multimédia, fotónica aplicada, software confiável e sistemas de computação avançada – são estas as quatro áreas que os investigadores do INESC TEC vão trabalhar no âmbito dos cinco projetos que foram aprovados através do Concurso de Projetos Exploratórios da Fundação para a Ciência e a Tecnologia (FCT).

02 outubro 2024

Inteligência Artificial

Kick-off of the first European project led by INESC TEC in the health area

It is called AI4Lungs; it aims to develop Artificial Intelligence (AI) tools and computational models to optimise the diagnosis and treatment of lung diseases. Through a holistic and multimodal approach, researchers will create a personalised healthcare solution for respiratory diseases. In late February, representatives of the 18 partner entities of the project (from 10 countries) met at INESC TEC to kick off the AI4Lungs project.

01 abril 2024

001

Projetos Selecionados

PFAI4_5eD

Programa de Formação Avançada Industria 4 - 5a edição

2024-2024

Equipa
002

Laboratórios

Laboratório de Computação Musical e Sonora

Laboratório de Tecnologias Óticas e Eletrónicas

Publicações

2025

A Review of Voicing Decision in Whispered Speech: From Rules to Machine Learning

Autores
da Silva, JMPP; Duarte Nunes, G; Ferreira, A;

Publicação

Abstract

2025

Neural network models for whisper to normal speech conversion

Autores
Yamamura, F; Scalassara, R; Oliveira, A; Ferreira, JS;

Publicação
U.Porto Journal of Engineering

Abstract
Whispers are common and essential for secondary communication. Nonetheless, individuals with aphonia, including laryngectomees, rely on whispers as their primary means of communication. Due to the distinct features between whispered and regular speech, debates have emerged in the field of speech recognition, highlighting the challenge of effectively converting between them. This study investigates the characteristics of whispered speech and proposes a system for converting whispered vowels into normal ones. The system is developed using multilayer perceptron networks and two types of generative adversarial networks. Three metrics are analyzed to evaluate the performance of the system: mel-cepstral distortion, root mean square error of the fundamental frequency, and accuracy with f1-score of a vowel classifier. Overall, the perceptron networks demonstrated better results, with no significant differences observed between male and female voices or the presence/absence of speech silence, except for improved accuracy in estimating the fundamental frequency during the conversion process. © 2025, Universidade do Porto - Faculdade de Engenharia. All rights reserved.

2025

A Vision-aided Open Radio Access Network for Obstacle-aware Wireless Connectivity

Autores
Simões, C; Coelho, A; Ricardo, M;

Publicação
20th Wireless On-Demand Network Systems and Services Conference, WONS 2025, Hintertux, Austria, January 27-29, 2025

Abstract
High-frequency radio networks, including those operating in the millimeter-wave bands, are sensible to Line-of-Sight (LoS) obstructions. Computer Vision (CV) algorithms can be leveraged to improve network performance by processing and interpreting visual data, enabling obstacle avoidance and ensuring LoS signal propagation. We propose a vision-aided Radio Access Network (RAN) based on the O-RAN architecture and capable of perceiving the surrounding environment. The vision-aided RAN consists of a gNodeB (gNB) equipped with a video camera that employs CV techniques to extract critical environmental information. An xApp is used to collect and process metrics from the RAN and receive data from a Vision Module (VM). This enhances the RAN's ability to perceive its surroundings, leading to better connectivity in challenging environments. © 2025 IFIP.

2025

A Framework to Develop and Validate RL-Based Obstacle-Aware UAV Positioning Algorithms

Autores
Shafafi, K; Ricardo, M; Campos, R;

Publicação
CoRR

Abstract

2025

A Survey of Recent Advances and Challenges in Deep Audio-Visual Correlation Learning

Autores
Vilaça, L; Yu, Y; Viana, P;

Publicação
ACM Computing Surveys

Abstract
Audio-visual correlation learning aims to capture and understand natural phenomena between audio and visual data. The rapid growth of Deep Learning propelled the development of proposals that process audio-visual data and can be observed in the number of proposals in the past years. Thus encouraging the development of a comprehensive survey. Besides analyzing the models used in this context, we also discuss some tasks of definition and paradigm applied in AI multimedia. In addition, we investigate objective functions frequently used and discuss how audio-visual data is exploited in the optimization process, i.e., the different methodologies for representing knowledge in the audio-visual domain. In fact, we focus on how human-understandable mechanisms, i.e., structured knowledge that reflects comprehensible knowledge, can guide the learning process. Most importantly, we provide a summarization of the recent progress of Audio-Visual Correlation Learning (AVCL) and discuss the future research directions.

Factos & Números

82Investigadores

2016

28Investigadores Séniores

2016

2Capítulos de livros

2020

Contactos