Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Tópicos
de interesse
Detalhes

Detalhes

017
Publicações

2020

On the Reproduction of Real Wireless Channel Occupancy in ns-3

Autores
Cruz, R; Fontes, H; Ruela, J; Ricardo, M; Campos, R;

Publicação
CoRR

Abstract

2019

A Routing Metric for Inter-flow Interference-aware Flying Multi-hop Networks

Autores
Coelho, A; Almeida, EN; Ruela, J; Campos, R; Ricardo, M;

Publicação
2019 IEEE Symposium on Computers and Communications (ISCC)

Abstract

2019

Repeatable and Reproducible Wireless Networking Experimentation through Trace-based Simulation

Autores
Lamela, V; Fontes, H; Oliveira, T; Ruela, J; Ricardo, M; Campos, R;

Publicação
CoRR

Abstract

2018

RedeFINE: Centralized Routing for High-capacity Multi-hop Flying Networks

Autores
Coelho, A; Almeida, EN; Silva, P; Ruela, J; Campos, R; Ricardo, M;

Publicação
14th International Conference on Wireless and Mobile Computing, Networking and Communications, WiMob 2018, Limassol, Cyprus, October 15-17, 2018

Abstract

2017

Enabling Broadband Internet Access Offshore using Tethered Balloons: The BLUECOM plus experience

Autores
Teixeira, FB; Oliveira, T; Lopes, M; Leocadio, C; Salazar, P; Ruela, J; Campos, R; Ricardo, M;

Publicação
OCEANS 2017 - ABERDEEN

Abstract
The growth of the Blue Economy has been boosted by a set of traditional and new activities including maritime transportation, fisheries, environmental monitoring, deep sea mining, and inspection missions. These activities are urging for a cost-effective broadband communications solution capable of supporting both above and underwater missions at remote ocean areas, since many of them rely on an ever-increasing number of Autonomous Surface Vehicles (ASV), Autonomous Underwater Vehicles (AUV) and Remote Operated Vehicles (ROV), which need to transmit large amounts of data to shore. The BLUE-COM+ project has considered the usage of helium balloons to increase the antenna height, and overtake the earth curvature and achieve Fresnel zone clearance, combined with the use of sub-GHz frequency bands to enable long range communications. In this paper we present the results obtained in three sea trials. They show that the BLUECOM+ architecture is capable of supporting human and system activities at remote ocean areas by enabling Internet access beyond 50 km from shore, live video conference calls with the quality of experience available on land, and real-time data upload to the cloud by ASVs, AUVs and ROVs using standard access technologies with bitrates above 1 Mbit/s.