Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Sobre

Sobre

Hélder P. Oliveira Hélder P. Oliveira was born in Porto, Portugal, in 1980. He graduated in Electrical and Computer Engineering in 2004, received the M.Sc. degree in Automation, Instrumentation and Control in 2008 and the Ph.D. degree in Electrical and Computer Engineering in 2013 at the Faculty of Engineering of the University of Porto (FEUP), Portugal. He is currently working as Senior Researcher at INESC TEC - Institute for Systems and Computer Engineering, Technology and Science, a R&D institute affiliated to the University of Porto. He is the Leader of the Visual Computing and Machine Intelligence Area, member of the coordination council of the Centre for Telecommunications and Multimedia, and takes part of the Breast Research Group. He is also one of the coordinators of the Data Science Hub at INESC TEC. He is also working at the Computer Science Department of the Faculty of Sciences of the University of Porto as an Invited Assistant Professor. Between 2014 and 2016 he was contracted as Invited Assistant Professor at Informatics Engineering Department of FEUP. Previously between 2008 and 2011 was working as Invited Assistant in the same Faculty and Department. Hélder Oliveira is the principal investigator in 2 funded research projects (LuCaS, MICOS), project member in 4 projects (S-MODE, HEMOSwimmers, LEGEM and TAMI). In the past was also project member in 5 other funded projects (one European and 4 National) and 3 other as research assistant. He was also responsible at INESC TEC for other 2 projects related with technological transfer with industry, the project Evo3DModel with Adapttech - Adaptation Technologies and the project FollicleCounter with Saúde Viável. He was the founder member and coordinator (between 2010 and 2013) of the Bio-related Image Processing and Analysis Student’s Group (BioStar) at FEUP. Since 2007 I have co-authored 20 peer-reviewed papers and 8 journal abstracts. I have 1 patent conceded (Europe, China, Japan), 3 book chapters and also 64 works in international conferences, 40 articles in national refereed conferences and participated in the creation of 3 public datasets. In total, these publications have attracted 748 citations, with h-index of 14 according to Harzing’s Publish or Perish application on March 30, 2021. He was one of the mentors and belonged to the organizer committee of the VISion Understanding and Machine Intelligence (VISUM) summer school in 6 editions of the event. He also participated in the organization of other 12 events and was invited as keynote speaker in 3 international events. Hélder Oliveira is currently supervising 6 PhD Students, and has 1 Phd Student concluded as supervisor in 2018. During his career supervised (or co-supervised) 56 MSc students. Currently supervises 4 research fellows in projects at INESC TEC. Hélder Oliveira participated as principal jury in 2 PhD and 15 MSc defences as principal examiner. Hélder Oliveira is member of Portuguese Association of Pattern Recognition (APRP) and was been elected for president of the fiscal council in 2017. His research interests include medical image analysis, bio-image analysis, computer vision, image and video processing, machine learning, data science, computer science, programming, and 3D modelling.

Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    Hélder Filipe Oliveira
  • Cargo

    Investigador Auxiliar
  • Desde

    01 novembro 2008
023
Publicações

2026

Enhancing Medical Image Analysis: A Pipeline Combining Synthetic Image Generation and Super-Resolution

Autores
Sousa, P; Campai, D; Andrade, J; Pereira, P; Goncalves, T; Teixeira, LF; Pereira, T; Oliveira, HP;

Publicação
PATTERN RECOGNITION AND IMAGE ANALYSIS, IBPRIA 2025, PT II

Abstract
Cancer is a leading cause of mortality worldwide, with breast and lung cancer being the most prevalent globally. Early and accurate diagnosis is crucial for successful treatment, and medical imaging techniques play a pivotal role in achieving this. This paper proposes a novel pipeline that leverages generative artificial intelligence to enhance medical images by combining synthetic image generation and super-resolution techniques. The framework is validated in two medical use cases (breast and lung cancers), demonstrating its potential to improve the quality and quantity of medical imaging data, ultimately contributing to more precise and effective cancer diagnosis and treatment. Overall, although some limitations do exist, this paper achieved satisfactory results for an image size which is conductive to specialist analysis, and further expands upon this field's capabilities.

2026

Abnormal Human Behaviour Detection Using Normalising Flows and Attention Mechanisms

Autores
Nogueira, AFR; Oliveira, HP; Teixeira, LF;

Publicação
PATTERN RECOGNITION AND IMAGE ANALYSIS, IBPRIA 2025, PT I

Abstract
The aim of this work is to explore normalising flows to detect anomalous behaviours which is an essential task mainly for surveillance systems-related applications. To accomplish that, a series of ablation studies were performed by varying the parameters of the Spatio-Temporal Graph Normalising Flows (STG-NF) model [3] and combining it with attention mechanisms. Out of all these experiments, it was only possible to improve the state-of-the-art result for the UBnormal dataset by 3.4 percentual points (pp), for the Avenue by 4.7 pp and for the Avenue-HR by 3.2 pp. However, further research remains urgent to find a model that can give the best performance across different scenarios. The inaccuracies of the pose tracking and estimation algorithm seems to be the main factor limiting the models' performance. The code is available at https://github.com/AnaFilipaNogueira/Abnormal-Human-Behaviour-Detection- using-Normalising-Flows-and- Attention-Mechanisms.

2026

Optimizing Medical Image Captioning with Conditional Prompt Encoding

Autores
Fernandes, RF; Oliveira, HS; Ribeiro, PP; Oliveira, HP;

Publicação
PATTERN RECOGNITION AND IMAGE ANALYSIS, IBPRIA 2025, PT II

Abstract
Medical image captioning is an essential tool to produce descriptive text reports of medical images. One of the central problems of medical image captioning is their poor domain description generation because large pre-trained language models are primarily trained in non-medical text domains with different semantics of medical text. To overcome this limitation, we explore improvements in contrastive learning for X-ray images complemented with soft prompt engineering for medical image captioning and conditional text decoding for caption generation. The main objective is to develop a softprompt model to improve the accuracy and clinical relevance of the automatically generated captions while guaranteeing their complete linguistic accuracy without corrupting the models' performance. Experiments on the MIMIC-CXR and ROCO datasets showed that the inclusion of tailored soft-prompts improved accuracy and efficiency, while ensuring a more cohesive medical context for captions, aiding medical diagnosis and encouraging more accurate reporting.

2025

Causal representation learning through higher-level information extraction

Autores
Silva, F; Oliveira, HP; Pereira, T;

Publicação
ACM COMPUTING SURVEYS

Abstract
The large gap between the generalization level of state-of-the-art machine learning and human learning systems calls for the development of artificial intelligence (AI) models that are truly inspired by human cognition. In tasks related to image analysis, searching for pixel-level regularities has reached a power of information extraction still far from what humans capture with image-based observations. This leads to poor generalization when even small shifts occur at the level of the observations. We explore a perspective on this problem that is directed to learning the generative process with causality-related foundations, using models capable of combining symbolic manipulation, probabilistic reasoning, and pattern recognition abilities. We briefly review and explore connections of research from machine learning, cognitive science, and related fields of human behavior to support our perspective for the direction to more robust and human-like artificial learning systems.

2025

Markerless multi-view 3D human pose estimation: A survey

Autores
Nogueira, AFR; Oliveira, HP; Teixeira, LF;

Publicação
IMAGE AND VISION COMPUTING

Abstract
3D human pose estimation aims to reconstruct the human skeleton of all the individuals in a scene by detecting several body joints. The creation of accurate and efficient methods is required for several real-world applications including animation, human-robot interaction, surveillance systems or sports, among many others. However, several obstacles such as occlusions, random camera perspectives, or the scarcity of 3D labelled data, have been hampering the models' performance and limiting their deployment in real-world scenarios. The higher availability of cameras has led researchers to explore multi-view solutions due to the advantage of being able to exploit different perspectives to reconstruct the pose. Most existing reviews focus mainly on monocular 3D human pose estimation and a comprehensive survey only on multi-view approaches to determine the 3D pose has been missing since 2012. Thus, the goal of this survey is to fill that gap and present an overview of the methodologies related to 3D pose estimation in multi-view settings, understand what were the strategies found to address the various challenges and also, identify their limitations. According to the reviewed articles, it was possible to find that most methods are fully-supervised approaches based on geometric constraints. Nonetheless, most of the methods suffer from 2D pose mismatches, to which the incorporation of temporal consistency and depth information have been suggested to reduce the impact of this limitation, besides working directly with 3D features can completely surpass this problem but at the expense of higher computational complexity. Models with lower supervision levels were identified to overcome some of the issues related to 3D pose, particularly the scarcity of labelled datasets. Therefore, no method is yet capable of solving all the challenges associated with the reconstruction of the 3D pose. Due to the existing trade-off between complexity and performance, the best method depends on the application scenario. Therefore, further research is still required to develop an approach capable of quickly inferring a highly accurate 3D pose with bearable computation cost. To this goal, techniques such as active learning, methods that learn with a low level of supervision, the incorporation of temporal consistency, view selection, estimation of depth information and multi-modal approaches might be interesting strategies to keep in mind when developing a new methodology to solve this task.

Teses
supervisionadas

2023

Vision-based AI Approach for the Real-Time Detection of Compensatory Movements during Upper Limb Rehabilitation

Autor
Cláudia Daniela Costa Rocha

Instituição
INESCTEC

2023

Development of landmark detection in lower limb sockets to improve INSIGHT product suite

Autor
Gil Manuel Gomes Fernandes

Instituição
INESCTEC

2023

CT-Based Lung Adenocarcinoma Prediction using 2D and 3D CNN Architectures

Autor
Tânia Maria Carvalho Leite Mendes

Instituição
INESCTEC

2023

AI-based models to predict the Traumatic Brain Injury outcome

Autor
Ricardo Miguel Anjo Noronha Ribeiro

Instituição
INESCTEC

2023

Data-driven Traffic Generation Model for Network Digital Twins

Autor
Catarina Mouro de Sousa

Instituição
INESCTEC