Cookies
Usamos cookies para melhorar nosso site e a sua experiência. Ao continuar a navegar no site, você aceita a nossa política de cookies. Ver mais
Aceitar Rejeitar
  • Menu
Sobre
Download foto HD

Sobre

Rui Campos tem doutoramento em Engenharia Electrotécnica e de Computadores pela Universidade do Porto desde 2011. Atualmente, é coordenador da área de redes sem fios (http://win.inesctec.pt) no Centro de Telecomunicações e Multimédia composta por 30 investigadores, e é membro sénior do IEEE. Rui Campos tem vindo a coordenadar vários projetos de I&D+i, incluindo: SIMBED, UGREEN, BLUECOM+, MareCom, MTGrid, a ação WiFIX dentro do projeto FP7 CONFINE, Mare-Fi, Under-Fi, ReCoop e HiperWireless. Rui Campos tem igualmente participado em múltiplos projetos de I&D, incluindo os seguintes projetos europeus: H2020 RAWFIE, FP7 SUNNY, FP7 CONFINE, FP6 Ambient Networks Phase 1 e FP6 Ambient Networks Phase 2. Os seus interesses de investigação incluem os aspetos de controlo de acesso ao meio, gestão de recursos rádio, gestão de mobilidade e auto-configuração em redes emergentes, com especial foco nas redes formadas por plataformas voadoras, redes marítimas e redes subaquáticas. 

Tópicos
de interesse
Detalhes

Detalhes

030
Publicações

2020

Height Optimization in Aerial Networks for Enhanced Broadband Communications at Sea

Autores
Teixeira, FB; Campos, R; Ricardo, M;

Publicação
IEEE Access

Abstract

2020

On the Reproduction of Real Wireless Channel Occupancy in ns-3

Autores
Cruz, R; Fontes, H; Ruela, J; Ricardo, M; Campos, R;

Publicação
CoRR

Abstract

2019

Improving ns-3 Emulation Performance for Fast Prototyping of Routing and SDN Protocols: Moving Data Plane Operations to Outside of ns-3

Autores
Fontes, H; Cardoso, T; Campos, R; Ricardo, M;

Publicação
Simulation Modelling Practice and Theory

Abstract

2019

A Comprehensive Study On Enterprise Wi-Fi Access Points Power Consumption

Autores
Silva, P; Almeida, NT; Campos, R;

Publicação
IEEE Access

Abstract

2019

Energy Consumption Management for Dense Wi-Fi Networks

Autores
Silva, P; Almeida, NT; Campos, R;

Publicação
IFIP Wireless Days

Abstract
Wi-Fi networks lack energy consumption management mechanisms. In particular, during nighttime periods, the energy waste may be significant, since all Access Points (APs) are kept switched on even though there is minimum or null traffic demand. The fact that more than 80% of all wireless traffic is originated or terminated indoor, and served by Wi-Fi, has led the scientific community to look into energy saving mechanisms for Wi-Fi networks. State of the art solutions address the problem by switching APs on and off based on manually inserted schedules or by analyzing real-time traffic demand. The first are vendor specific; the second may induce frequent station (STA) handoffs, which has an impact on network performance. The lack of implementability of solutions is also a shortcoming in most works.We propose an algorithm, named Energy Consumption Management Algorithm (ECMA), that learns the daytime and nighttime periods of the Wi-Fi network. ECMA was designed having in mind its implementability over legacy Wi-Fi equipment. At daytime, the radio interfaces of the AP (2.4 GHz and 5 GHz) are switched on and off automatically, according to the traffic demand. At nighttime, clusters of APs, covering the same area, are formed, leaving one AP always switched on for basic coverage and the redundant APs swichted off to maximize energy savings, while avoiding coverage and performance hampering. Simulation results show energy savings of up to 50% are possible using the ECMA algorithm. © 2019 IEEE.

Teses
supervisionadas

2019

Routing for Flying Networks using Software-Defined Networking

Autor
André Duarte Correia de Oliveira

Instituição
UP-FEUP

2019

Improving the performance evaluation of wireless networks: towards a simulation-experimentation synergy using ns-3

Autor
Hélder Martins Fontes

Instituição
UP-FEUP

2019

Using Machine Learning to Improve Performance of Flying Networks

Autor
Baltasar de Vasconcelos Dias Aroso

Instituição
UP-FEUP

2019

A Machine Learning Approach for Path Loss Estimation in Emerging Wireless Networks

Autor
João Rafael de Figueiredo Cabral

Instituição
UP-FEUP

2019

Green Wireless Video Sensor Networks using a Low-Power Control Channel

Autor
Filipe Miguel Monteiro da Silva e Sousa

Instituição
UP-FEUP