Cookies
Usamos cookies para melhorar nosso site e a sua experiência. Ao continuar a navegar no site, você aceita a nossa política de cookies. Ver mais
Aceitar Rejeitar
  • Menu
Sobre
Download foto HD

Sobre

Rui Campos tem doutoramento em Engenharia Electrotécnica e de Computadores pela Universidade do Porto desde 2011. Atualmente, é coordenador da área de redes sem fios (http://win.inesctec.pt) no Centro de Telecomunicações e Multimédia composta por 30 investigadores, e é membro sénior do IEEE. Rui Campos tem vindo a coordenadar vários projetos de I&D+i, incluindo: SIMBED, UGREEN, BLUECOM+, MareCom, MTGrid, a ação WiFIX dentro do projeto FP7 CONFINE, Mare-Fi, Under-Fi, ReCoop e HiperWireless. Rui Campos tem igualmente participado em múltiplos projetos de I&D, incluindo os seguintes projetos europeus: H2020 RAWFIE, FP7 SUNNY, FP7 CONFINE, FP6 Ambient Networks Phase 1 e FP6 Ambient Networks Phase 2. Os seus interesses de investigação incluem os aspetos de controlo de acesso ao meio, gestão de recursos rádio, gestão de mobilidade e auto-configuração em redes emergentes, com especial foco nas redes formadas por plataformas voadoras, redes marítimas e redes subaquáticas. 

Tópicos
de interesse
Detalhes

Detalhes

033
Publicações

2021

Joint Traffic-Aware UAV Placement and Predictive Routing for Aerial Networks

Autores
Almeida, EN; Coelho, A; Ruela, J; Campos, R; Ricardo, M;

Publicação
CoRR

Abstract

2021

Reproducible MIMO operation in ns-3 using trace-based wi-fi rate adaptation

Autores
Lamela, V; Fontes, H; Ruela, J; Ricardo, M; Campos, R;

Publicação
ACM International Conference Proceeding Series

Abstract
Today, wireless networks are operating in increasingly complex environments, impacting the evaluation and validation of new networking solutions. Simulation, although fully controllable and easily reproducible, depends on simplified physical layer and channel models, which often produce optimistic results. Experimentation is also influenced by external random phenomena and limited testbed scale and availability, resulting in hardly repeatable and reproducible results. Previously, we have proposed the Trace-based Simulation (TS) approach to address the problem. TS uses traces of radio link quality and position of nodes to accurately reproduce past experiments in ns-3. Yet, in its current version, TS is not compatible with scenarios where Multiple-In-Multiple-Out (MIMO) is used. This is especially relevant since ns-3 assumes perfectly independent MIMO radio streams. In this paper, we introduce the Trace-based Wi-Fi Station Manager Model, which is capable of reproducing the Rate Adaptation of past Wi-Fi experiments, including the number of effective radio streams used. To validate the proposed model, the network throughput was measured in different experiments performed in the w-iLab.t testbed, considering Single-In-Single-Out (SISO) and MIMO operation using IEEE 802.11a/n/ac standards. The experimental results were then compared with the network throughput achieved using the improved TS and Pure Simulation (PS) approaches, validating the new proposed model and confirming its relevance to reproduce experiments previously executed in real environments. © 2021 ACM.

2021

Traffic-aware Gateway Placement for High-capacity Flying Networks

Autores
Coelho, A; Fontes, H; Campos, R; Ricardo, M;

Publicação
2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring)

Abstract

2021

A Fast Gateway Placement Algorithm for Flying Networks

Autores
Santos, G; Martins, J; Coelho, A; Ricardo, M; Campos, R;

Publicação
CoRR

Abstract

2020

Height Optimization in Aerial Networks for Enhanced Broadband Communications at Sea

Autores
Teixeira, FB; Campos, R; Ricardo, M;

Publicação
IEEE Access

Abstract

Teses
supervisionadas

2020

Centralized Routing for Flying Backhaul Networks

Autor
André Filipe Coelho

Instituição
UP-FEUP

2020

Multi-technology Flying Access Network for Disaster Management Scenarios

Autor
Rúben Miguel Rei Queirós

Instituição
INESCTEC

2020

Multi-Technology Flying Access Network for Disaster Management Scenarios

Autor
Rúben Miguel Rei Queirós

Instituição
INESCTEC

2020

Trace-based ns3-gym Reinforcement Learning Environment Framework for Wireless Networks

Autor
Gonçalo Regueiras dos Santos

Instituição
UP-FEUP

2020

High Definition Wireless Video Streaming using Underwater Data Mules

Autor
João Pedro Teixeira Loureiro

Instituição
INESCTEC