Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Sobre

Sobre

Sou natural do distrito de porto. Obtive a Licenciatura em Eng. Eletrotécnica e de Computadores em 2001, o grau de Mestre em Redes e Serviços de Comunicação em 2004 e o Doutoramento em Eng. Eletrotécnica e de Computadores em 2012, todos na Faculdade de Engenharia da Universidade do Porto (FEUP). Sou colaborador no INESC TEC desde 2001 e tenho a função de Investigador Sénior no Centro de Telecomunicações e Multimédia. Sou também Professor Adjunto Convidado no Departamento de Engenharia Eletrotécnica do Instituto Superior de Engenharia do Porto (ISEP). Os meus atuais interesses de investigação incluem procesamento de imagem e vídeo, sistemas multimédia e visão computacional. 

Tópicos
de interesse
Detalhes

Detalhes

011
Publicações

2023

Benchmarking edge computing devices for grape bunches and trunks detection using accelerated object detection single shot multibox deep learning models

Autores
Magalhaes, SC; dos Santos, FN; Machado, P; Moreira, AP; Dias, J;

Publicação
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE

Abstract
Purpose: Visual perception enables robots to perceive the environment. Visual data is processed using computer vision algorithms that are usually time-expensive and require powerful devices to process the visual data in real-time, which is unfeasible for open-field robots with limited energy. This work benchmarks the performance of different heterogeneous platforms for object detection in real-time. This research benchmarks three architectures: embedded GPU-Graphical Processing Units (such as NVIDIA Jetson Nano 2 GB and 4 GB, and NVIDIA Jetson TX2), TPU-Tensor Processing Unit (such as Coral Dev Board TPU), and DPU-Deep Learning Processor Unit (such as in AMD-Xilinx ZCU104 Development Board, and AMD-Xilinx Kria KV260 Starter Kit). Methods: The authors used the RetinaNet ResNet-50 fine-tuned using the natural VineSet dataset. After the trained model was converted and compiled for target-specific hardware formats to improve the execution efficiency.Conclusions and Results: The platforms were assessed in terms of performance of the evaluation metrics and efficiency (time of inference). Graphical Processing Units (GPUs) were the slowest devices, running at 3 FPS to 5 FPS, and Field Programmable Gate Arrays (FPGAs) were the fastest devices, running at 14 FPS to 25 FPS. The efficiency of the Tensor Processing Unit (TPU) is irrelevant and similar to NVIDIA Jetson TX2. TPU and GPU are the most power-efficient, consuming about 5 W. The performance differences, in the evaluation metrics, across devices are irrelevant and have an F1 of about 70 % and mean Average Precision (mAP) of about 60 %.

2023

A Review of Recent Advances and Challenges in Grocery Label Detection and Recognition

Autores
Guimaraes, V; Nascimento, J; Viana, P; Carvalho, P;

Publicação
APPLIED SCIENCES-BASEL

Abstract
When compared with traditional local shops where the customer has a personalised service, in large retail departments, the client has to make his purchase decisions independently, mostly supported by the information available in the package. Additionally, people are becoming more aware of the importance of the food ingredients and demanding about the type of products they buy and the information provided in the package, despite it often being hard to interpret. Big shops such as supermarkets have also introduced important challenges for the retailer due to the large number of different products in the store, heterogeneous affluence and the daily needs of item repositioning. In this scenario, the automatic detection and recognition of products on the shelves or off the shelves has gained increased interest as the application of these technologies may improve the shopping experience through self-assisted shopping apps and autonomous shopping, or even benefit stock management with real-time inventory, automatic shelf monitoring and product tracking. These solutions can also have an important impact on customers with visual impairments. Despite recent developments in computer vision, automatic grocery product recognition is still very challenging, with most works focusing on the detection or recognition of a small number of products, often under controlled conditions. This paper discusses the challenges related to this problem and presents a review of proposed methods for retail product label processing, with a special focus on assisted analysis for customer support, including for the visually impaired. Moreover, it details the public datasets used in this topic and identifies their limitations, and discusses future research directions of related fields.

2023

From a Visual Scene to a Virtual Representation: A Cross-Domain Review

Autores
Pereira, A; Carvalho, P; Pereira, N; Viana, P; Corte-Real, L;

Publicação
IEEE ACCESS

Abstract
The widespread use of smartphones and other low-cost equipment as recording devices, the massive growth in bandwidth, and the ever-growing demand for new applications with enhanced capabilities, made visual data a must in several scenarios, including surveillance, sports, retail, entertainment, and intelligent vehicles. Despite significant advances in analyzing and extracting data from images and video, there is a lack of solutions able to analyze and semantically describe the information in the visual scene so that it can be efficiently used and repurposed. Scientific contributions have focused on individual aspects or addressing specific problems and application areas, and no cross-domain solution is available to implement a complete system that enables information passing between cross-cutting algorithms. This paper analyses the problem from an end-to-end perspective, i.e., from the visual scene analysis to the representation of information in a virtual environment, including how the extracted data can be described and stored. A simple processing pipeline is introduced to set up a structure for discussing challenges and opportunities in different steps of the entire process, allowing to identify current gaps in the literature. The work reviews various technologies specifically from the perspective of their applicability to an end-to-end pipeline for scene analysis and synthesis, along with an extensive analysis of datasets for relevant tasks.

2022

Streamlining Action Recognition in Autonomous Shared Vehicles with an Audiovisual Cascade Strategy

Autores
Pinto, JR; Carvalho, P; Pinto, C; Sousa, A; Capozzi, L; Cardoso, JS;

Publicação
PROCEEDINGS OF THE 17TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISAPP), VOL 5

Abstract
With the advent of self-driving cars, and big companies such as Waymo or Bosch pushing forward into fully driverless transportation services, the in-vehicle behaviour of passengers must be monitored to ensure safety and comfort. The use of audio-visual information is attractive by its spatio-temporal richness as well as non-invasive nature, but faces tile likely constraints posed by available hardware and energy consumption. Hence new strategies are required to improve the usage of these scarce resources. We propose the processing of audio and visual data in a cascade pipeline for in-vehicle action recognition. The data is processed by modality-specific sub-modules. with subsequent ones being used when a confident classification is not reached. Experiments show an interesting accuracy-acceleration trade-off when compared with a parallel pipeline with late fusion, presenting potential for industrial applications on embedded devices.

2022

Photo2Video: Semantic-Aware Deep Learning-Based Video Generation from Still Content

Autores
Viana, P; Andrade, MT; Carvalho, P; Vilaca, L; Teixeira, IN; Costa, T; Jonker, P;

Publicação
JOURNAL OF IMAGING

Abstract
Applying machine learning (ML), and especially deep learning, to understand visual content is becoming common practice in many application areas. However, little attention has been given to its use within the multimedia creative domain. It is true that ML is already popular for content creation, but the progress achieved so far addresses essentially textual content or the identification and selection of specific types of content. A wealth of possibilities are yet to be explored by bringing the use of ML into the multimedia creative process, allowing the knowledge inferred by the former to influence automatically how new multimedia content is created. The work presented in this article provides contributions in three distinct ways towards this goal: firstly, it proposes a methodology to re-train popular neural network models in identifying new thematic concepts in static visual content and attaching meaningful annotations to the detected regions of interest; secondly, it presents varied visual digital effects and corresponding tools that can be automatically called upon to apply such effects in a previously analyzed photo; thirdly, it defines a complete automated creative workflow, from the acquisition of a photograph and corresponding contextual data, through the ML region-based annotation, to the automatic application of digital effects and generation of a semantically aware multimedia story driven by the previously derived situational and visual contextual data. Additionally, it presents a variant of this automated workflow by offering to the user the possibility of manipulating the automatic annotations in an assisted manner. The final aim is to transform a static digital photo into a short video clip, taking into account the information acquired. The final result strongly contrasts with current standard approaches of creating random movements, by implementing an intelligent content- and context-aware video.

Teses
supervisionadas

2022

Image Processing for Football Game Analysis

Autor
Francisco Gonçalves Sousa

Instituição
UP-FEUP

2022

Visual Data Processing for Anomaly Detection

Autor
Francisco Tiago de Espírito Santo e Caetano

Instituição
UP-FEUP

2022

Robust occupant action classification in shared autonomous vehicles

Autor
Vítor Hugo Pereira Barbosa

Instituição
UP-FEUP

2022

Identification and extraction of floor planes for 3D representation

Autor
Carlos Miguel Guerra Soeiro

Instituição
UP-FEUP

2022

Automatic Analysis of Grocery Product Labels

Autor
Vânia Cristina da Silva Ribeiro Guimarães

Instituição
UP-FCUP