Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Tópicos
de interesse
Detalhes

Detalhes

Publicações

2023

Invasive and Minimally Invasive Evaluation of Diffusion Properties of Sugar in Muscle

Autores
Pinheiro, MR; Tuchin, VV; Oliveira, LM;

Publicação
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS

Abstract
In this article, the use of diffuse reflectance (R-d) spectroscopy is explored to evaluate the diffusion properties of water and sucrose in skeletal muscle during optical clearing treatments. Treating muscle samples with sucrose-water solutions with different osmolarities, collimated transmittance (T-c) and R-d measurements were performed to obtain the diffusion time (t) and the diffusion coefficient (D) values that characterize the unique water and sucrose fluxes in the muscle and also the optical clearing mechanisms designated as tissue dehydration and refractive index matching. Considering the R-d measurements, the estimated t and D values for water in the muscle were 63.1s and 1.72x10(-6) cm(2)/s, while the ones estimated for sucrose were 261s and 4.86x10(-7) cm(2)/s. Comparing these values with the ones estimated from the T-c measurements, the relative differences observed for t and D were 1.6% and 2.8% in the case of water and 0.3% and 0.4% in the case of sucrose.

2023

Measurement of tissue optical properties in a wide spectral range: a review [Invited]

Autores
Martins, IS; Silva, HF; Lazareva, EN; Chernomyrdin, NV; Zaytsev, KI; Oliveira, LM; Tuchin, VV;

Publicação
BIOMEDICAL OPTICS EXPRESS

Abstract
A distinctive feature of this review is a critical analysis of methods and results of measurements of the optical properties of tissues in a wide spectral range from deep UV to terahertz waves. Much attention is paid to measurements of the refractive index of biological tissues and liquids, the knowledge of which is necessary for the effective application of many methods of optical imaging and diagnostics. The optical parameters of healthy and pathological tissues are presented, and the reasons for their differences are discussed, which is important for the discrimination of pathologies and the demarcation of their boundaries. When considering the interaction of terahertz radiation with tissues, the concept of an effective medium is discussed, and relaxation models of the effective optical properties of tissues are presented. Attention is drawn to the manifestation of the scattering properties of tissues in the THz range and the problems of measuring the optical properties of tissues in this range are discussed. In conclusion, a method for the dynamic analysis of the optical properties of tissues under optical clearing using an application of immersion agents is presented. The main mechanisms and technologies of optical clearing, as well as examples of the successful application for differentiation of healthy and pathological tissues, are analyzed. (c) 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

2023

1st Spring Biophotonics Conference in Porto

Autores
Oliveira, LM; Meglinski, I; Tuchin, VV;

Publicação
JOURNAL OF BIOPHOTONICS

Abstract
[No abstract available]

2023

Fast calculation of spectral optical properties and pigment content detection in human normal and pathological kidney

Autores
Botelho, AR; Silva, HF; Martins, IS; Carneiro, IC; Carvalho, SD; Henrique, RM; Tuchin, VV; Oliveira, LM;

Publicação
SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY

Abstract
A fast calculation method was used to obtain the spectral optical properties of human normal and pathological (chromophobe renal cell carcinoma) kidney tissues. Using total transmittance, total reflectance and collimated transmittance spectra acquired from ex vivo kidney samples, the spectral optical properties of both tissues, namely the absorption, the scattering and the reduced scattering coefficients, as well as the scattering anisotropy, dispersion and light penetration depth, were calculated between 200 and 1000 nm. Analysis of the mean absorption coefficient spectra of the kidney tissues showed that both contain melanin and lipofuscin, and that 83 % of the melanin in the normal kidney converts into lipofuscin in the pathological kidney.

2022

Invasive and minimally invasive optical detection of pigment accumulation in brain cortex

Autores
Oliveira, LR; Gonçalves, TM; Pinheiro, MR; Fernandes, LE; Martins, IS; Silva, HF; Oliveira, HP; Tuchin, VV;

Publicação
Journal of Biomedical Photonics and Engineering

Abstract
The estimation of the spectral absorption coefficient of biological tissues provides valuable information that can be used in diagnostic procedures. Such estimation can be made using direct calculations from invasive spectral measurements or though machine learning algorithms based on noninvasive or minimally invasive spectral measurements. Since in a noninvasive approach, the number of measurements is limited, an exploratory study to investigate the use of artificial generated data in machine learning techniques was performed to evaluate the spectral absorption coefficient of the brain cortex. Considering the spectral absorption coefficient that was calculated directly from invasive measurements as reference, the similar spectra that were estimated through different machine learning approaches were able to provide comparable information in terms of pigment, DNA and blood contents in the cortex. The best estimated results were obtained based only on the experimental measurements, but it was also observed that artificially generated spectra can be used in the estimations to increase accuracy, provided that a significant number of experimental spectra are available both to generate the complementary artificial spectra and to estimate the resulting absorption spectrum of the tissue. © 2022 Journal of Biomedical Photonics & Engineering. © J-BPE.

Teses
supervisionadas

2022

Avaliação não invasiva da difusão de agentes de transparência em tecidos

Autor
MARIA DO ROSÁRIO SANTOS PINHEIRO

Instituição
UP-FEUP

2022

Caracterização de agentes de transparência

Autor
DANIELA SILVA TEIXEIRA

Instituição
UP-FEUP

2022

Correlação entre a magnitude de janelas de transparência em tecidos e a osmolaridade do agente usado

Autor
RICARDO MIGUEL SILVA FERREIRA

Instituição
UP-FEUP

2022

Multimodal-based machine learning approach for early detection of colorectal cancer

Autor
Luís Emanuel Pereira Pinto Fernandes

Instituição
UP-FEUP