Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Factos & Números
000
Apresentação

Centro de Robótica e Sistemas Autónomos

A nossa missão no CRAS é desenvolver soluções robóticas inovadoras para ambientes complexos e múltiplas operações, incluindo recolha de dados, inspeção, mapeamento, vigilância ou intervenção.

No CRAS trabalhamos em quatro áreas de investigação principais: navegação autónoma; missões de longo prazo; sensorização, mapeamento e intervenção; operações de múltiplas plataformas.

Últimas Notícias
Robótica

Qual o impacto real dos microplásticos nos ecossistemas marinhos? INESC TEC na criação de um equipamento capaz de fazer essa identificação

Que os microplásticos têm um impacto nos organismos e nos ecossistemas marinhos, não é novidade. Há, no entanto, ainda por fazer a nível científico no que diz respeito à avaliação do real impacto que têm e, para isso, são necessárias ferramentas que permitam, por um lado, recolher novos dados ambientais, fazer uma avaliação e, com tudo isto, melhorar o conhecimento científico sobre como os microplásticos afetam o plâncton e o funcionamento dos ecossistemas.

29 outubro 2025

Robótica

Uma plataforma que combina conhecimento, inovação e formação para alavancar a economia azul do Atlântico

Há um projeto que quer dar um novo fôlego à economia azul do Atlântico. O INESC TEC é um dos parceiros do UPWELLING que quer criar uma rede de inovação com o objetivo de oferecer formação e experimentação, garantindo a ligação entre empresas e centro de inovação.

22 outubro 2025

Robótica

INESC TEC volta a participar no maior exercício de robótica marinha do mundo

Ao longo do mês de setembro, os investigadores do INESC TEC estiveram em Troia e Sesimbra para participar em mais uma edição do REPMUS, o maior exercício de experimentação de robótica e veículos não tripulados do mundo.  

21 outubro 2025

Robótica

Sistema robótico desenvolvido pelo INESC TEC conclui com sucesso voos de microgravidade

O INESC TEC desenvolveu um free-flying robot, isto é, uma esfera robótica aérea compacta e totalmente autónoma, que “voou” até ao Canadá para ser testado em voos de microgravidade. Foram dois os investigadores do INESC TEC – André Santos e João Coutinho -, que concluíram com sucesso os voos parabólicos.

16 outubro 2025

Robótica

INESC TEC na liderança científica da primeira missão espacial análoga em habitat em Portugal

Monsaraz será palco da primeira missão análoga realizada dentro de um habitat em solo português. A “Monsaraz Mars Analog Mission” vai decorrer entre 13 e 25 de outubro, no espaço exterior do Observatório Astronómico do Lago-Alqueva. A entrada no habitat será feita às 14h da próxima segunda-feira, dia 13. Treze dias depois, a 25 de outubro, os cientistas têm hora prevista de saída também às 14h. A liderança científica e tecnológica da missão é da responsabilidade do INESC TEC.

08 outubro 2025

014

Projetos Selecionados

DSM_IMPACT

TECHONOLOGICAL CONSULTANCY FOR DSM IMPACT

2025-2026

MP_EVA

Mar Profundo para recolhas visuais e filmagens com o veículo autónomo EVA

2025-2026

BATTLEVERSE

A Human-Centred MSaaS Ecosystem for Enhanced Mission Planning and Execution via BATTLEfield Modelling, AdVERSarial AI, and Multi-domain Simulation Environments

2025-2028

HIFLOW

Hull-Integrated Flow Sensing Matrix for Advancing Inertial Underwater Positioning of Oceanographic Unmanned Platforms

2025-2027

ATLAS

Atlantic Tracking with Lightwave Acoustic Sensing

2025-2028

MP_Oceanografia

Mar Profundo para aquisição de dados de oceanografia física, química e biológica

2025-2025

MP_testesSensores

Mar Profundo para testes de sensores 2025

2025-2025

OPMAR3_EPISEA

Operações de inspeção de equipamentos marítimos para produção de energia offshore

2025-2025

BRI_AE_Project

Sistema de Monitorização de Ativos Geotécnicos de Risco

2025-2025

SERV_EX_UAV

SERV_EX_UAV

2025-2025

DigiMaTRIA

DigiMaTRIA - Gestão Digital da Manutenção de Ativos Industriais com recurso a Robótica e Inteligência Artificial

2025-2028

SoleMATES

Sole Monitoring using Automated and Traditional eDNA Sampling

2025-2027

BolsasFCT_Gestao

Financiamento Bolsas Doutoramento FCT - Gestão

2025-9999

ACOUSTNET

Acoustic Network for Enhanced Underwater Communication and Positioning

2024-2025

Equipa
001

Laboratórios

Laboratório de Robótica e Sistemas Robóticos Autónomos

Publicações

CRAS Publicações

Ler todas as publicações

2026

A framework for supporting the reproducibility of computational experiments in multiple scientific domains

Autores
Costa, L; Barbosa, S; Cunha, J;

Publicação
Future Gener. Comput. Syst.

Abstract
In recent years, the research community, but also the general public, has raised serious questions about the reproducibility and replicability of scientific work. Since many studies include some kind of computational work, these issues are also a technological challenge, not only in computer science, but also in most research domains. Computational replicability and reproducibility are not easy to achieve due to the variety of computational environments that can be used. Indeed, it is challenging to recreate the same environment via the same frameworks, code, programming languages, dependencies, and so on. We propose a framework, known as SciRep, that supports the configuration, execution, and packaging of computational experiments by defining their code, data, programming languages, dependencies, databases, and commands to be executed. After the initial configuration, the experiments can be executed any number of times, always producing exactly the same results. Our approach allows the creation of a reproducibility package for experiments from multiple scientific fields, from medicine to computer science, which can be re-executed on any computer. The produced package acts as a capsule, holding absolutely everything necessary to re-execute the experiment. To evaluate our framework, we compare it with three state-of-the-art tools and use it to reproduce 18 experiments extracted from published scientific articles. With our approach, we were able to execute 16 (89%) of those experiments, while the others reached only 61%, thus showing that our approach is effective. Moreover, all the experiments that were executed produced the results presented in the original publication. Thus, SciRep was able to reproduce 100% of the experiments it could run. © 2025 The Authors

2025

Real-Time Registration of 3D Underwater Sonar Scans

Autores
Ferreira, A; Almeida, J; Matos, A; Silva, E;

Publicação
ROBOTICS

Abstract
Due to space and energy restrictions, lightweight autonomous underwater vehicles (AUVs) are usually fitted with low-power processing units, which limits the ability to run demanding applications in real time during the mission. However, several robotic perception tasks reveal a parallel nature, where the same processing routine is applied for multiple independent inputs. In such cases, leveraging parallel execution by offloading tasks to a GPU can greatly enhance processing speed. This article presents a collection of generic matrix manipulation kernels, which can be combined to develop parallelized perception applications. Taking advantage of those building blocks, we report a parallel implementation for the 3DupIC algorithm-a probabilistic scan matching method for sonar scan registration. Tests demonstrate the algorithm's real-time performance, enabling 3D sonar scan matching to be executed in real time onboard the EVA AUV.

2025

The SAIL dataset of marine atmospheric electric field observations over the Atlantic Ocean

Autores
Barbosa, S; Dias, N; Almeida, C; Amaral, G; Ferreira, A; Camilo, A; Silva, E;

Publicação
EARTH SYSTEM SCIENCE DATA

Abstract
A unique dataset of marine atmospheric electric field observations over the Atlantic Ocean is described. The data are relevant not only for atmospheric electricity studies, but more generally for studies of the Earth's atmosphere and climate variability, as well as space-Earth interaction studies. In addition to the atmospheric electric field data, the dataset includes simultaneous measurements of other atmospheric variables, including gamma radiation, visibility, and solar radiation. These ancillary observations not only support interpretation and understanding of the atmospheric electric field data, but also are of interest in themselves. The entire framework from data collection to final derived datasets has been duly documented to ensure traceability and reproducibility of the whole data curation chain. All the data, from raw measurements to final datasets, are preserved in data repositories with a corresponding assigned DOI. Final datasets are available from the Figshare repository (https://figshare.com/projects/SAIL_Data/178500, ), and computational notebooks containing the code used at every step of the data curation chain are available from the Zenodo repository (https://zenodo.org/communities/sail, Project SAIL community, 2025).

2025

Evaluation of Deep Learning Models for Polymetallic Nodule Detection and Segmentation in Seafloor Imagery

Autores
Loureiro, G; Dias, A; Almeida, J; Martins, A; Silva, E;

Publicação
JOURNAL OF MARINE SCIENCE AND ENGINEERING

Abstract
Climate change has led to the need to transition to clean technologies, which depend on an number of critical metals. These metals, such as nickel, lithium, and manganese, are essential for developing batteries. However, the scarcity of these elements and the risks of disruptions to their supply chain have increased interest in exploiting resources on the deep seabed, particularly polymetallic nodules. As the identification of these nodules must be efficient to minimize disturbance to the marine ecosystem, deep learning techniques have emerged as a potential solution. Traditional deep learning methods are based on the use of convolutional layers to extract features, while recent architectures, such as transformer-based architectures, use self-attention mechanisms to obtain global context. This paper evaluates the performance of representative models from both categories across three tasks: detection, object segmentation, and semantic segmentation. The initial results suggest that transformer-based methods perform better in most evaluation metrics, but at the cost of higher computational resources. Furthermore, recent versions of You Only Look Once (YOLO) have obtained competitive results in terms of mean average precision.

2025

A Multimodal Perception System for Precise Landing of UAVs in Offshore Environments

Autores
Claro, RM; Neves, FSP; Pinto, AMG;

Publicação
JOURNAL OF FIELD ROBOTICS

Abstract
The integration of precise landing capabilities into unmanned aerial vehicles (UAVs) is crucial for enabling autonomous operations, particularly in challenging environments such as the offshore scenarios. This work proposes a heterogeneous perception system that incorporates a multimodal fiducial marker, designed to improve the accuracy and robustness of autonomous landing of UAVs in both daytime and nighttime operations. This work presents ViTAL-TAPE, a visual transformer-based model, that enhance the detection reliability of the landing target and overcomes the changes in the illumination conditions and viewpoint positions, where traditional methods fail. VITAL-TAPE is an end-to-end model that combines multimodal perceptual information, including photometric and radiometric data, to detect landing targets defined by a fiducial marker with 6 degrees-of-freedom. Extensive experiments have proved the ability of VITAL-TAPE to detect fiducial markers with an error of 0.01 m. Moreover, experiments using the RAVEN UAV, designed to endure the challenging weather conditions of offshore scenarios, demonstrated that the autonomous landing technology proposed in this work achieved an accuracy up to 0.1 m. This research also presents the first successful autonomous operation of a UAV in a commercial offshore wind farm with floating foundations installed in the Atlantic Ocean. These experiments showcased the system's accuracy, resilience and robustness, resulting in a precise landing technology that extends mission capabilities of UAVs, enabling autonomous and Beyond Visual Line of Sight offshore operations.

Factos & Números

7Contratados de I&D

2020

8Artigos em revistas indexadas

2020

7Artigos em conferências indexadas

2020

Contactos