Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Factos & Números
000
Apresentação

Centro de Robótica e Sistemas Autónomos

A nossa missão no CRAS é desenvolver soluções robóticas inovadoras para ambientes complexos e múltiplas operações, incluindo recolha de dados, inspeção, mapeamento, vigilância ou intervenção.

No CRAS trabalhamos em quatro áreas de investigação principais: navegação autónoma; missões de longo prazo; sensorização, mapeamento e intervenção; operações de múltiplas plataformas.

Últimas Notícias
Robótica

A Fábrica do Futuro também se faz com I&D INESC TEC – e vai revolucionar o setor automóvel

A DRIVOLUTION é uma das Agendas Mobilizadoras do Plano de Recuperação e Resiliência (PRR) e conta com a participação do INESC TEC. O objetivo desta Agenda, que reúne 38 parceiros e tem um investimento superior a 50 milhões de euros, é criar um modelo de Fábrica do Futuro, capaz de responder aos desafios do setor automóvel. Da participação do INESC TEC, já resultou o desenvolvimento de um Veículo Aéreo Autónomo destinado a executar operações logísticas em armazéns industriais.

18 dezembro 2025

Robótica

INESC TEC volta ao Mediterrâneo para testes de deteção de equipamento de pesca “fantasma”

Depois dos testes em Itália, os investigadores do INESC TEC regressaram ao mar Mediterrâneo para uma nova ronda de demonstrações do projeto NETTAG+, desta vez ao largo da ilha de Vis, na Croácia. Acompanhados do veículo autónomo IRIS, o objetivo passou por testar as ferramentas desenvolvidas para localização de redes de pesca perdidas no fundo do mar.  

18 dezembro 2025

Robótica

INESC TEC “mergulhou” em campanha oceanográfica pelos montes submarinos do complexo Madeira-Tore

Em outubro, os investigadores do INESC TEC contribuíram para novo levantamento de dados e mapeamento do complexo geológico Madeira-Tore. Com a ajuda do veículo autónomo EVA, foi possível recolher dados e imagens do fundo marinho até aos 1.100 metros de profundidade.  

18 dezembro 2025

Inovação para o mar a triplicar: INESCTEC.OCEAN assina Memorando de Entendimento com Centros de Excelência de Chipre e Croácia

O Centro de Excelência liderado pelo INESC TEC – INESCTEC.OCEAN -, o Instituto Marinho e Marítimo do Chipre (CMMI) e o MARBLE – Centro de Excelência em Robótica e Tecnologias Marítimas carimbaram um acordo para a colaboração multilateral em inovação para o mar. Na cidade cipriota de Limassol, a equipa de investigadores do INESC TEC participou no workshop Breaking the Surface, onde conquistou um 2.º lugar num desafio de deteção acústica subaquática.  

09 dezembro 2025

Robótica

8 mil cientistas marcaram presença numa das maiores conferências mundiais de robótica. 4 deles são do INESC TEC

Uma das maiores e mais reconhecidas conferências de robótica a nível mundial chama-se IROS (da sigla – International Conference on Intelligent Robotis and Systems) e este ano realizou-se na China, no final do mês de outubro. O INESC TEC marcou presença através de quatro cientistas que tiveram a oportunidade de apresentar cinco trabalhos num fórum de rigoroso escrutínio na aceitação de investigações e que, este ano, reuniu mais de 8 mil participantes de todo o mundo.

14 novembro 2025

Equipa
001

Laboratórios

Laboratório de Robótica e Sistemas Robóticos Autónomos

Publicações

CRAS Publicações

Ler todas as publicações

2026

Mapping Ethics in EPS@ISEP Robotics Projects

Autores
Malheiro, B; Guedes, P; F Silva, MF; Ferreira, PD;

Publicação
Lecture Notes in Networks and Systems

Abstract
The European Project Semester (EPS), offered by the Instituto Superior de Engenharia do Porto (ISEP), is a capstone programme designed for undergraduate students in engineering, product design, and business. EPS@ISEP fosters project-based learning, promotes multicultural and interdisciplinary teamwork, and ethics- and sustainability-driven design. This study applies Natural Language Processing techniques, specifically text mining, to analyse project papers produced by EPS@ISEP teams. The proposed method aims to identify evidence of ethical concerns within EPS@ISEP projects. An innovative keyword mapping approach is introduced that first defines and refines a list of ethics-related keywords through prompt engineering. This enriched list of keywords is then used to systematically map the content of project papers. The findings indicate that the EPS@ISEP robotics project papers analysed demonstrate awareness of ethical considerations and actively incorporate them into design processes. The method presented is adaptable to various application areas, such as monitoring compliance with responsible innovation or sustainability policies. © 2025 Elsevier B.V., All rights reserved.

2026

A framework for supporting the reproducibility of computational experiments in multiple scientific domains

Autores
Costa, L; Barbosa, S; Cunha, J;

Publicação
Future Gener. Comput. Syst.

Abstract
In recent years, the research community, but also the general public, has raised serious questions about the reproducibility and replicability of scientific work. Since many studies include some kind of computational work, these issues are also a technological challenge, not only in computer science, but also in most research domains. Computational replicability and reproducibility are not easy to achieve due to the variety of computational environments that can be used. Indeed, it is challenging to recreate the same environment via the same frameworks, code, programming languages, dependencies, and so on. We propose a framework, known as SciRep, that supports the configuration, execution, and packaging of computational experiments by defining their code, data, programming languages, dependencies, databases, and commands to be executed. After the initial configuration, the experiments can be executed any number of times, always producing exactly the same results. Our approach allows the creation of a reproducibility package for experiments from multiple scientific fields, from medicine to computer science, which can be re-executed on any computer. The produced package acts as a capsule, holding absolutely everything necessary to re-execute the experiment. To evaluate our framework, we compare it with three state-of-the-art tools and use it to reproduce 18 experiments extracted from published scientific articles. With our approach, we were able to execute 16 (89%) of those experiments, while the others reached only 61%, thus showing that our approach is effective. Moreover, all the experiments that were executed produced the results presented in the original publication. Thus, SciRep was able to reproduce 100% of the experiments it could run. © 2025 The Authors

2026

Crisis or Redemption with AI and Robotics? The Dawn of a New Era

Autores
Silva, MF; Tokhi, MO; Ferreira, MIA; Malheiro, B; Guedes, P; Ferreira, P; Costa, MT;

Publicação
Lecture Notes in Networks and Systems

Abstract

2025

Variable Structure Depth Controller for Energy Savings in an Underwater Device: Proof of Stability

Autores
Pinto, JB; Carneiro, JF; de Almeida, FG; Cruz, NA;

Publicação
ACTUATORS

Abstract
Underwater exploration is vital for advancing scientific understanding of marine ecosystems, biodiversity, and oceanic processes. Autonomous underwater vehicles and sensor platforms play a crucial role in continuous monitoring, but their operational endurance is often limited by energy constraints. Various control strategies have been proposed to enhance energy efficiency, including robust and optimal controllers, energy-optimal model predictive control, and disturbance-aware strategies. Recent work introduced a variable structure depth controller for a sensor platform with a variable buoyancy module, resulting in a 22% reduction in energy consumption. This paper extends that work by providing a formal stability proof for the proposed switching controller, ensuring safe and reliable operation in dynamic underwater environments. In contrast to the conventional approach used in controller stability proofs for switched systems-which typically relies on the existence of multiple Lyapunov functions-the method developed in this paper adopts a different strategy. Specifically, the stability proof is based on a novel analysis of the system's trajectory in the net buoyancy force-versus-depth error plane. The findings were applied to a depth-controlled sensor platform previously developed by the authors, using a well-established system model and considering physical constraints. Despite adopting a conservative approach, the results demonstrate that the control law can be implemented while ensuring formal system stability. Moreover, the study highlights how stability regions are affected by different controller parameter choices and mission requirements, namely, by determining how these aspects affect the bounds of the switching control action. The results provide valuable guidance for selecting the appropriate controller parameters for specific mission scenarios.

2025

Depth Control of Variable Buoyancy Systems: A Low Energy Approach Using a VSC with a Variable-Amplitude Law

Autores
Pinto, JB; Carneiro, JF; de Almeida, FG; Cruz, NA;

Publicação
ACTUATORS

Abstract
Underwater exploration relies heavily on autonomous underwater vehicles and sensor platforms for sustained monitoring of marine environments, yet their operational duration is limited by energy constraints. To enhance energy efficiency, various control strategies have been proposed, including robust, optimal, and disturbance-aware approaches. Recent work introduced a variable structure controller (VSC) with a constant-amplitude control action for depth control of a platform equipped with a variable buoyancy module, achieving an average 22% reduction in energy use in comparison with conventional PID-based controllers. In a separate paper, the conditions for its closed-loop stability were proven. This study extends these works by proposing a controller with a variable-amplitude control action designed to minimize energy consumption. A formal proof of stability is provided to guarantee safe operation even under conservative assumptions. The controller is applied to a previously developed depth-regulated sensor platform using a validated physical model. Additionally, this study analyzes how the controller parameters and mission requirements affect stability regions, offering practical guidelines for parameter tuning. A method to estimate oscillation amplitude during hovering tasks is also introduced. Simulation trials validate the proposed approach, showing energy savings of up to 16% when compared to the controller using a constant-amplitude control action.

Factos & Números

8Artigos em revistas indexadas

2020

11Docentes do Ensino Superior

2020

1Capítulos de livros

2020

Contactos