Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Factos & Números
000
Apresentação

Centro de Robótica e Sistemas Autónomos

A nossa missão no CRAS é desenvolver soluções robóticas inovadoras para ambientes complexos e múltiplas operações, incluindo recolha de dados, inspeção, mapeamento, vigilância ou intervenção.

No CRAS trabalhamos em quatro áreas de investigação principais: navegação autónoma; missões de longo prazo; sensorização, mapeamento e intervenção; operações de múltiplas plataformas.

Últimas Notícias
Robótica

Dez anos de medição de radioatividade na Graciosa revelam pistas sobre o clima e fenómenos naturais

Há dez anos que o INESC TEC monitoriza, de forma contínua, a radioatividade ambiental na ilha Graciosa, no arquipélago dos Açores. Os dados recolhidos pela equipa de investigação do Instituto apontam para uma maior humidade no solo e ajudam a distinguir variações naturais de possíveis ameaças nucleares.

27 junho 2025

Robótica

Investigação do INESC TEC para monitorização de ruído no mar em destaque na 36th European Cetacean Society

O INESC TEC marcou presença na 36.ª edição da European Cetacean Society Conference (ECS), uma das principais conferências europeias dedicadas ao estudo e conservação de cetáceos, que este ano decorreu em Ponta Delgada, nos Açores.

29 maio 2025

Robótica

INESC TEC vai ajudar na inspeção subaquática das infraestruturas portuárias dos Açores

Arrancou o projeto AI4Ports, que tem como objetivo automatizar a deteção de anomalias em estruturas submersas, nos Portos dos Açores, com recurso a Inteligência Artificial (AI).

29 maio 2025

Robótica

A revolução na operação e manutenção de parques eólicos offshore envolve robôs e inteligência artificial e tem assinatura INESC TEC

Chama-se AEROSUB (Automated Inspection Robots for Surface, Aerial and Underwater Substructures) o novo projeto de 12,1M€ coordenado pelo INESC TEC cujo principal objetivo é revolucionar a operação e a manutenção de parques eólicos offshore fixos e flutuantes. Como? Através do desenvolvimento de soluções tecnológicas de classe mundial que tornem possível reduzir os custos de operação da infraestrutura de produção de energia renovável, em ambientes extremos. Para tornar isto uma realidade, já em 2030, diversas soluções robóticas serão equipadas com tecnologias de inteligência artificial (IA) e análise de dados.

30 janeiro 2025

Robótica

INESC TEC integra experiência-piloto para monitorização de ruído no mar

A sul de São Miguel, no arquipélago dos Açores, três boias estiveram durante 24 horas no mar a recolher dados, no caso, ruído relacionado com as atividades humanas e que tem impacto no comportamento dos cetáceos. Foi a primeira vez que se recolheu informação sobre o ruído no mar ao largo de São Miguel – a mais de 10 quilómetros da costa - e esta experiência-piloto contou com a participação do INESC TEC.

02 dezembro 2024

005

Projetos Selecionados

OPMAR3_EPISEA

Operações de inspeção de equipamentos marítimos para produção de energia offshore

2025-2025

BRI_AE_Project

Sistema de Monitorização de Ativos Geotécnicos de Risco

2025-2025

SERV_EX_UAV

SERV_EX_UAV

2025-2025

DigiMaTRIA

DigiMaTRIA - Gestão Digital da Manutenção de Ativos Industriais com recurso a Robótica e Inteligência Artificial

2025-2028

SoleMATES

Sole Monitoring using Automated and Traditional eDNA Sampling

2025-2027

Equipa
001

Laboratórios

Laboratório de Robótica e Sistemas Robóticos Autónomos

Publicações

CRAS Publicações

Ler todas as publicações

2025

Real-Time Registration of 3D Underwater Sonar Scans

Autores
Ferreira, A; Almeida, J; Matos, A; Silva, E;

Publicação
ROBOTICS

Abstract
Due to space and energy restrictions, lightweight autonomous underwater vehicles (AUVs) are usually fitted with low-power processing units, which limits the ability to run demanding applications in real time during the mission. However, several robotic perception tasks reveal a parallel nature, where the same processing routine is applied for multiple independent inputs. In such cases, leveraging parallel execution by offloading tasks to a GPU can greatly enhance processing speed. This article presents a collection of generic matrix manipulation kernels, which can be combined to develop parallelized perception applications. Taking advantage of those building blocks, we report a parallel implementation for the 3DupIC algorithm-a probabilistic scan matching method for sonar scan registration. Tests demonstrate the algorithm's real-time performance, enabling 3D sonar scan matching to be executed in real time onboard the EVA AUV.

2025

Evaluation of Deep Learning Models for Polymetallic Nodule Detection and Segmentation in Seafloor Imagery

Autores
Loureiro, G; Dias, A; Almeida, J; Martins, A; Silva, E;

Publicação
JOURNAL OF MARINE SCIENCE AND ENGINEERING

Abstract
Climate change has led to the need to transition to clean technologies, which depend on an number of critical metals. These metals, such as nickel, lithium, and manganese, are essential for developing batteries. However, the scarcity of these elements and the risks of disruptions to their supply chain have increased interest in exploiting resources on the deep seabed, particularly polymetallic nodules. As the identification of these nodules must be efficient to minimize disturbance to the marine ecosystem, deep learning techniques have emerged as a potential solution. Traditional deep learning methods are based on the use of convolutional layers to extract features, while recent architectures, such as transformer-based architectures, use self-attention mechanisms to obtain global context. This paper evaluates the performance of representative models from both categories across three tasks: detection, object segmentation, and semantic segmentation. The initial results suggest that transformer-based methods perform better in most evaluation metrics, but at the cost of higher computational resources. Furthermore, recent versions of You Only Look Once (YOLO) have obtained competitive results in terms of mean average precision.

2025

A Multimodal Perception System for Precise Landing of UAVs in Offshore Environments

Autores
Claro, RM; Neves, FSP; Pinto, AMG;

Publicação
Journal of Field Robotics

Abstract
The integration of precise landing capabilities into unmanned aerial vehicles (UAVs) is crucial for enabling autonomous operations, particularly in challenging environments such as the offshore scenarios. This work proposes a heterogeneous perception system that incorporates a multimodal fiducial marker, designed to improve the accuracy and robustness of autonomous landing of UAVs in both daytime and nighttime operations. This work presents ViTAL-TAPE, a visual transformer-based model, that enhance the detection reliability of the landing target and overcomes the changes in the illumination conditions and viewpoint positions, where traditional methods fail. VITAL-TAPE is an end-to-end model that combines multimodal perceptual information, including photometric and radiometric data, to detect landing targets defined by a fiducial marker with 6 degrees-of-freedom. Extensive experiments have proved the ability of VITAL-TAPE to detect fiducial markers with an error of 0.01 m. Moreover, experiments using the RAVEN UAV, designed to endure the challenging weather conditions of offshore scenarios, demonstrated that the autonomous landing technology proposed in this work achieved an accuracy up to 0.1 m. This research also presents the first successful autonomous operation of a UAV in a commercial offshore wind farm with floating foundations installed in the Atlantic Ocean. These experiments showcased the system's accuracy, resilience and robustness, resulting in a precise landing technology that extends mission capabilities of UAVs, enabling autonomous and Beyond Visual Line of Sight offshore operations. © 2025 Wiley Periodicals LLC.

2025

Raya: A Bio-Inspired AUV for Inspection and Intervention of Underwater Structures

Autores
Pereira, P; Silva, R; Marques, JVA; Campilho, R; Matos, A; Pinto, AM;

Publicação
IEEE ACCESS

Abstract
This work presents a bio-inspired Autonomous Underwater Vehicle (AUV) concept called Raya that enables high manoeuvrability required for close-range inspection and intervention tasks, while fostering endurance for long-range operations by enabling efficient navigation. The AUV has an estimated terminal velocity of 0.82 m/s in an optimal environment, and a capacity to acquire visual data and sonar measurements in all directions. Raya was designed with the potential to incorporate an electric manipulator arm of 6 degrees of freedom (DoF) for free-floating underwater intervention. Smart and biologically inspired principles applied to morphology and a strategic thruster configuration assure that Raya is capable of manoeuvring in all 6 DoFs even when equipped with a manipulator with a 5 kg payload. Extensive experiments were conducted using simulation tools and real-life environments to validate Raya's requirements and functionalities. The stresses and displacements of the rigid bodies were analysed using finite element analysis (FEA), and an estimation of the terminal forward velocity was achieved using a dynamic model. To assess the accuracy of the perception system, a reconstruction task took place in an indoor pool, resulting in a 3D reconstruction with average length, width, and depth errors below 1. 5%. The deployment of Raya in the ATLANTIS Coastal Testbed and Porto de Leix & otilde;es allowed the validation of the propulsion system and the gathering of valuable 2D and 3D data, thus proving the suitability of the vehicle for operation and maintenance (O&M) activities of underwater structures.

2025

Access opportunities to a unique long term deep sea infrastructure

Autores
Cusi, S; Martins, A; Tomasi, B; Puillat, I;

Publicação

Abstract
EMSO ERIC is a unique European distributed marine Research Infrastructure dedicated to the observation and study of the deep ocean in the long term in fixed regional areas. It provides different services of which access to its infrastructure by external users -engineers, scientists and researchers-, working both in the public and private sectors. The aim of this service, called physical access, is to facilitate access to instrumented platforms deployed at different sites across the European seas, from the seabed to the surface, in order to perform experiments in geosciences and engineering in real ocean conditions. Depending on the logistics and availability of each site, users may deploy their own platforms, instruments, systems or technologies to be tested by the existing equipment that, in this case, can provide reference measurements. Users may also deploy their own systems on the existing EMSO platforms, either in standalone mode or connected to them, receiving power and, in some cases, being able to transmit data by satellite or by cable, depending on the site. Projects requiring the use of several EMSO sites are also accepted. The host EMSO Regional Facility provides logistics and technical support in order to deploy and recover the systems, access the data and it may also offer training and co-development. EMSO ERIC launches the physical access call on a yearly basis and evaluates the received project proposals every two months. Access is free of charge and funding is available for travel, consumables, shipping, operations and hardware adaptations needed to run the project. Since 2022, when the first call was launched, ten projects with varied topics have been funded and are in different phases of execution.

Factos & Números

7Artigos em conferências indexadas

2020

11Docentes do Ensino Superior

2020

15Investigadores Séniores

2016

Contactos