Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Sobre

Sobre

Investigador Auxiliar do CRAS, doutorado em Engenharia Eletrotécnica e de Computadores, no Departamento de Eletrónica Industrial da Universidade do Minho, em Dezembro de 2013. Desenvolvo transdutores de ultrassons piezoelétricos aplicados a comunicações sem fios em ambientes subaquáticos e desenvolvo diferentes sensores de baixo custo e tamanho reduzido. Participo e/ou lidero a execução de um total de 14 Projetos de P&D com financiamento competitivo, dos quais 2 como IP e 4 como Co-PI.

Tópicos
de interesse
Detalhes

Detalhes

Publicações

2023

Marine Sensors: Recent Advances and Challenges

Autores
Gontalves, L; Martins, MS; Lima, RA; Minas, G;

Publicação
SENSORS

Abstract
The ocean has a huge impact on our way of life; therefore, there is a need to monitor and protect its biodiversity [...].

2023

On the evaluation of strain energy release rate of cement-bone bonded joints under mode II loading

Autores
Campos, TD; Barbosa, MLS; Martins, M; Pereira, FAM; de Moura, MFSF; Nguyen, Q; Zille, A; Dourado, N;

Publicação
THEORETICAL AND APPLIED FRACTURE MECHANICS

Abstract
Bone cements based on poly(methylmethacrylate) (PMMA) are primarily used in joint replacement surgeries. In the fixation of joint replacement, the self-curing cement fills constitutes a very important interface. To under-stand and improve the interaction between cortical bone and bone cement it is essential to characterize the mechanical properties of cement-bone bonded joints in full detail. In this study, the end-notched flexure test was used in the context of pure mode II fracture characterisation of cement-bone bonded joints. A data reduction scheme based on crack equivalent concept was employed to overcome the difficulties inherent to crack length monitoring during damage propagation. A finite element method combined with a cohesive zone model was first used to validate numerically the adopted method. The procedure was subsequently applied to experimental results to determine the fracture toughness of cement-bone bonded joints under pure mode II loading. The consistency of the obtained results leads to the conclusion that the adopted procedure is adequate to carry out fracture characterisation of these joints under pure mode II loading. The innovative aspect of the present work lies in the application of cohesive zone modelling approach to PMMA-based cement-bone bonded joints.

2023

Design and In Situ Validation of Low-Cost and Easy to Apply Anti-Biofouling Techniques for Oceanographic Continuous Monitoring with Optical Instruments

Autores
Matos, T; Pinto, V; Sousa, P; Martins, M; Fernandez, E; Henriques, R; Goncalves, LM;

Publicação
SENSORS

Abstract
Biofouling is the major factor that limits long-term monitoring studies with automated optical instruments. Protection of the sensing areas, surfaces, and structural housing of the sensors must be considered to deliver reliable data without the need for cleaning or maintenance. In this work, we present the design and field validation of different techniques for biofouling protection based on different housing materials, biocides, and transparent coatings. Six optical turbidity probes were built using polylactic acid (PLA), acrylonitrile butadiene styrene (ABS), PLA with copper filament, ABS coated with PDMS, ABS coated with epoxy and ABS assembled with a system for in situ chlorine production. The probes were deployed in the sea for 48 days and their anti-biofouling efficiency was evaluated using the results of the field experiment, visual inspections, and calibration signal loss after the tests. The PLA and ABS were used as samplers without fouling protection. The probe with chlorine production outperformed the other techniques, providing reliable data during the in situ experiment. The copper probe had lower performance but still retarded the biological growth. The techniques based on transparent coatings, epoxy, and PDMS did not prevent biofilm formation and suffered mostly from micro-biofouling.

2022

Network nodes for ocean data exchange through submarine fiber optic cable repeaters

Autores
Martins, MS; Cruz, NA; Silva, A; Ferreira, B; Zabel, F; Matos, T; Jesus, SM; Pinto, A; Pereira, E; Matos, A; Faria, C; Tieppo, M; Goncalves, LM; Rocha, J; Faria, J;

Publicação
2022 OCEANS HAMPTON ROADS

Abstract
As humanity progresses and globalization advances, humanized environment and associated systems increase in complexity and size. In earth systems, oceans represent an essential element of equalization and normal functioning. Ocean-atmospheric interactions are nowadays believed to be at the heart of all earth vital signs and climatic behaviours, and therefore are essential to accurate monitoring and understanding of earth systems. The work presented is a preliminary result of the K2D- Knowledge and Data from the Deep to Space, project which addresses the challenge of creating underwater network nodes to provide power and communication to land through the submarine fiber optic cable repeaters. The N2ODE system will consist of a set of subsystems that will allow continuous monitoring and interaction with fixed and mobile underwater devices.

2022

Submarine Cables as Precursors of Persistent Systems for Large Scale Oceans Monitoring and Autonomous Underwater Vehicles Operation

Autores
Tieppo, M; Pereira, E; Garcia, LG; Rolim, M; Castanho, E; Matos, A; Silva, A; Ferreira, B; Pascoal, M; Almeida, E; Costa, F; Zabel, F; Faria, J; Azevedo, J; Alves, J; Moutinho, J; Goncalves, L; Martins, M; Cruz, N; Abreu, N; Silva, P; Viegas, R; Jesus, S; Chen, T; Miranda, T; Papalia, A; Hart, D; Leonard, J; Haji, M; de Weck, O; Godart, P; Lermusiaux, P;

Publicação
2022 OCEANS HAMPTON ROADS

Abstract
Long-term and reliable marine ecosystems monitoring is essential to address current environmental issues, including climate change and biodiversity threats. The existing oceans monitoring systems show clear data gaps, particularly when considering characteristics such as depth coverage or measured variables in deep and open seas. Over the last decades, the number of fixed and mobile platforms for in situ ocean data acquisition has increased significantly, covering all oceans' regions. However, these are largely dependent on satellite communications for data transmission, as well as on research cruises or opportunistic ship surveys, generally presenting a lag between data acquisition and availability. In this context, the creation of a widely distributed network of SMART cables (Science Monitoring And Reliable Telecommunications) - sensors attached to submarine telecommunication cables - appears as a promising solution to fill in the current ocean data gaps and ensure unprecedented oceans health continuous monitoring. The K2D (Knowledge and Data from the Deep to Space) project proposes the development of a persistent oceans monitoring network based on the use of telecommunications cables and Autonomous Underwater Vehicles (AUVs). The approach proposed includes several modules for navigation, communication and energy management, that enable the cost-effective gathering of extensive oceans data. These include physical, chemical, and biological variables, both registered with bottom fixed stations and AUVs operating in the water column. The data that can be gathered have multiple potential applications, including oceans health continuous monitoring and the enhancement of existing ocean models. The latter, in combination with geoinformatics and Artificial Intelligence, can create a continuum from the deep sea to near space, by integrating underwater remote sensing and satellite information to describe Earth systems in a holistic manner.

Teses
supervisionadas

2022

Deep-Sea Acoustic Transducers development

Autor
João Luis Lopes e Rocha

Instituição
UM

2022

Sediment circulation and accumulation sensors for in-situ continuous monitoring

Autor
Tiago André Rodrigues de Matos

Instituição
UM

2022

Otimização de um sensor pH para monitorização marinha

Autor
Ana Gabriela Vaz Viana

Instituição
UM

2022

Desenvolvimento de um sensor acústico para medição da corrente marítima

Autor
Rafael CAchetas Pereira

Instituição
UM