Cookies
Usamos cookies para melhorar nosso site e a sua experiência. Ao continuar a navegar no site, você aceita a nossa política de cookies. Ver mais
Aceitar Rejeitar
  • Menu
Sobre
Download foto HD

Sobre

Sou Investigador Sénior no centro de Róbotica e Sistemas Autónomos do INESC TEC. Formei-me na Faculdade de Engenharia da Universidade do Porto em Engenharia Electrotécnica e de Computadores, primeiro com o grau de mestre, em 2009, e depois com o grau de doutor, em 2014. Desde 2009, estou ligado à Robótica Submarina e de Superfície investigando em Controlo, Condução (guidance), Localização e Coordenação de robots marítimos.

As minhas atividades têm sido desenvolvidas no âmbito de diversos projectos nacionais e internacionais dos quais se destacam o projeto Lajeado (AUV para monitorização de barragens), o FP7 ICARUS (Integrated Components for Assisted Rescue and Unmanned Search operations) e o FLEXUS (Flexible Unmanned Surface vehicles for the Internet of moving things), financiado pelo projeto H2020 RAWFIE.

Estou ainda envolvido no desenvolvimento de vários sistemas robóticos e na origem de vários protótipos tais como o veículo de superfície autónomo FLEXUS e o veículo submarino autónomo SHAD.

Tópicos
de interesse
Detalhes

Detalhes

009
Publicações

2019

REX 16-Robotic Exercises 2016 Multi-robot field trials

Autores
Marques, MM; Mendonca, R; Marques, F; Ramalho, T; Lobo, V; Matos, A; Ferreira, B; Simoes, N; Castelao, I;

Publicação
2019 IEEE UNDERWATER TECHNOLOGY (UT)

Abstract
Nowadays, one of the problems associated with Unmanned Systems is the gap between research community and end-users. In order to emend this problem, the Portuguese Navy Research Center (CINAV) conducts the REX 2016 (Robotic Exercises). This paper describes the trials that were presented in this exercise, divided in two phases. The first phase happened at the Naval Base in Lisbon, with the support of divers and RHIBs (Rigid-Hulled Inflatable Boats), and the second phase, also with divers' support, at the coast of Lisbon-Cascais. It counted with many participants and research groups, including INESC-TEC, UNINOVA, TEKEVER and UAVISION. There are several advantages of doing this exercise, including for the Portuguese Navy, but also for partners. For the Navy, because it is an opportunity of being in contact with recent market technologies and researches. On the other hand, it is an opportunity for the partners to test their systems in a real environment, which usually is a difficult action to accomplish. Therefore, the paper describes three of the most relevant experiments: underwater docking stations, UAV and USV cooperation and Tracking targets from UAVs.

2019

Experimental evaluation of segmentation algorithms for corner detection in sonar images

Autores
Oliveira, PL; Ferreira, BM; Cruz, NA;

Publicação
OCEANS 2019 MTS/IEEE Seattle, OCEANS 2019

Abstract
Corners usually appear very distinct from the rest of the scene in a mechanical scanning imaging sonar (MSIS) image, generally characterized by sharp intensities. The detection of corners is particularly useful in human-structured environments such as tanks because the knowledge on their location provides a way to compute the vehicle position. The combination of some basic operations typically used for image segmentation have great potential to detect and localize corners in sonar images automatically. This article proposes and evaluates with experimental data a set of image segmentation algorithms for corner detection in sonar scans. The developed algorithms are evaluated with ground truth, and their performance is analyzed following a few relevant metrics for autonomous navigation. © 2019 Marine Technology Society.

2018

Experimental evaluation of shore to unmanned surface vehicle Wi-Fi communications

Autores
Coelho, A; Lopes, M; Ferreira, B; Campos, R; Ricardo, M;

Publicação
2018 Wireless Days, WD 2018, Dubai, United Arab Emirates, April 3-5, 2018

Abstract

2018

Development of a Dynamic Model for Twin Hull ASVs

Autores
Pinto, AF; Cruz, NA; Pinto, VH; Ferreira, BM;

Publicação
2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO)

Abstract

2018

Guidance of an Autonomous Surface Vehicle for Underwater Navigation Aid

Autores
Sousa, JP; Ferreira, BM; Cruz, NA;

Publicação
AUV 2018 - 2018 IEEE/OES Autonomous Underwater Vehicle Workshop, Proceedings

Abstract
Unmanned Underwater Vehicles (UUVs), such as Autonomous Underwater Vehicles (AUVs) and Remotely Operated Vehicles (ROVs) are versatile tools, suitable for many activities in different fields, and have seen an increase in usage, making them an area of interest in the study of robotics. The performance of any underwater vehicle in any given task is deeply affected by the precision of its localization system. The main challenge in underwater localization is the significant attenuation of any Radio Frequency (RF) signal underwater, which prevents the use of many common location methods such as the Global Positioning System (GPS). Many methods have been studied for the localization of UUVs, including the use of acoustic beacons. One of these methods is the use of a single moving beacon to obtain acoustic ranges, as opposed to a stationary single beacon, which restricts the UUV's trajectory or multiple beacons, involving more hardware, complicating missions' logistics and increasing costs. In this paper, a guidance algorithm based on the Fisher Information Matrix is proposed for an Autonomous Surface Vehicle to serve as a beacon vehicle and aid in the navigation of a UUV. The approach performances are assessed by means of simulations of the complete system under realistic conditions. © 2018 IEEE.

Teses
supervisionadas

2017

Rover submarino

Autor
José Tiago Cardoso Meireles

Instituição
UP-FEUP

2016

Projeto e desenvolvimento de um veículo submarino autónomo

Autor
Carlos Filipe Silva Gonçalves

Instituição
UP-FEUP