Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Sobre

Sobre

Sou Investigador Sénior no centro de Róbotica e Sistemas Autónomos do INESC TEC. Formei-me na Faculdade de Engenharia da Universidade do Porto em Engenharia Electrotécnica e de Computadores, primeiro com o grau de mestre, em 2009, e depois com o grau de doutor, em 2014. Desde 2009, estou ligado à Robótica Submarina e de Superfície investigando em Controlo, Condução (guidance), Localização e Coordenação de robots marítimos.

As minhas atividades têm sido desenvolvidas no âmbito de diversos projectos nacionais e internacionais dos quais se destacam o projeto Lajeado (AUV para monitorização de barragens), o FP7 ICARUS (Integrated Components for Assisted Rescue and Unmanned Search operations) e o FLEXUS (Flexible Unmanned Surface vehicles for the Internet of moving things), financiado pelo projeto H2020 RAWFIE.

Estou ainda envolvido no desenvolvimento de vários sistemas robóticos e na origem de vários protótipos tais como o veículo de superfície autónomo FLEXUS e o veículo submarino autónomo SHAD.

Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    Bruno Miguel Ferreira
  • Cargo

    Investigador Sénior
  • Desde

    01 janeiro 2010
014
Publicações

2025

Experimental Evaluation of LoRa Communication Over the Ocean Surface

Autores
Fábio Daniel Pacheco; André F. Pinto; José Maravalhas-Silva; Bruno M. Ferreira; Nuno A. Cruz;

Publicação
OCEANS 2025 - Great Lakes

Abstract

2025

Towards Adaptive Acoustic Signals for Enhanced Detection in Underwater Localization

Autores
Graça, PA; Alves, JC; Ferreira, BM;

Publicação
OCEANS 2025 - Great Lakes

Abstract

2024

Underwater Volumetric Mapping using Imaging Sonar and Free-Space Modeling Approach

Autores
Oliveira, AJ; Ferreira, BM; Cruz, NA;

Publicação
2024 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2024)

Abstract
Lack of information and perceptual ambiguity are key problems in sonar-based mapping applications. We propose a technique for mapping of underwater environments, building on the finite, positive, sonar beamwidth. Our approach models the free-space covered by each emitted acoustic pulse, employing volumetric techniques to create grid-based submaps of the unoccupied water volumes through images collected from imaging sonars. A representation of the occupied space is obtained by exploration of the free-space frontier. Special attention is given to acoustic image preparation and segmentation. Experimental results are provided based on real data collected from a dam shaft scenario.

2024

A Clustering-Aided Template Matching Algorithm Towards Underwater SLAM Using Imaging Sonar

Autores
Oliveira, J; Ferreira, M; Cruz, A;

Publicação
Oceans Conference Record (IEEE)

Abstract
In man-made marine infrastructures, elements such as pillars, cables or ducts are common, which provide distinctive landmarks for Simultaneous Localization and Mapping purposes. In this work, we concentrate on the application of template matching to acoustic imagery for landmark detection and tracking, building on the modeling of common elements in marine environments. The proposed algorithm extends on the original method by employing a density-based clustering technique for match candidate selection and leveraging vehicle inertial information to identify regions of interest in the acquired images, tackling performance deterioration resulting from motion-induced image deformation and overall acoustic feature ambiguity. Experimental results are provided based on datasets collected in a testing pool environment. © 2024 IEEE.

2024

A Model Predictive Control Approach to Enhance Obstacle Avoidance While Performing Autonomous Docking

Autores
Pinto A.; Ferreira B.M.; Cruz N.; Soares S.P.; Cunha J.B.;

Publicação
Oceans Conference Record (IEEE)

Abstract
In the present paper, we propose a control approach to perform docking of an autonomous surface vehicle (ASV) while avoiding surrounding obstacles. This control architecture is composed of two sequential controllers. The first outputs a feasible trajectory between the vessel's initial and target state while avoiding obstacles. This trajectory also minimizes the vehicle velocity while performing the maneuvers to increase the safety of onboard passengers. The second controller performs trajectory tracking while accounting for the actuator's physical limits (extreme actuation values and the rate of change). The method's performance is tested on simulation, as it enables a reliable ground truth method to validate the control architecture proposed.