Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Tópicos
de interesse
Detalhes

Detalhes

034
Publicações

2022

3DupIC: An Underwater Scan Matching Method for Three-Dimensional Sonar Registration

Autores
Ferreira, A; Almeida, J; Martins, A; Matos, A; Silva, E;

Publicação
SENSORS

Abstract
This work presents a six degrees of freedom probabilistic scan matching method for registration of 3D underwater sonar scans. Unlike previous works, where local submaps are built to overcome measurement sparsity, our solution develops scan matching directly from the raw sonar data. Our method, based on the probabilistic Iterative Correspondence (pIC), takes measurement uncertainty into consideration while developing the registration procedure. A new probabilistic sensor model was developed to compute the uncertainty of each scan measurement individually. Initial displacement guesses are obtained from a probabilistic dead reckoning approach, also detailed in this document. Experiments, based on real data, demonstrate superior robustness and accuracy of our method with respect to the popular ICP algorithm. An improved trajectory is obtained by integration of scan matching updates in the localization data fusion algorithm, resulting in a substantial reduction of the original dead reckoning drift.

2022

An holistic monitoring system for measurement of the atmospheric electric field over the ocean - The SAIL campaign

Autores
Barbosa, S; Dias, N; Almeida, C; Amaral, G; Ferreira, A; Lima, L; Silva, I; Martins, A; Almeida, J; Camilo, M; Silva, E;

Publicação
OCEANS 2022

Abstract
The atmospheric electric field is a key characteristic of the Earth system. Despite its relevance, oceanic measurements of the atmospheric electric field are scarce, as typically oceanic measurements tend to be focused on ocean properties rather than on the atmosphere above. This motivated the set-up of an innovative campaign on board the sail ship NRP Sagres focused on the measurement of the atmospheric electric field in the marine boundary layer. This paper describes the monitoring system that was developed to measure the atmospheric electric field during the planned circumnavigation expedition of the sail ship NRP Sagres. © 2022 IEEE.

2022

Unmanned Aerial Vehicle for Wind-Turbine Inspection. Next Step: Offshore

Autores
Dias, A; Almeida, J; Oliveira, A; Santos, T; Martins, A; Silva, E;

Publicação
2022 OCEANS HAMPTON ROADS

Abstract

2021

Autonomous High-Resolution Image Acquisition System for Plankton

Autores
Resende, J; Barbosa, P; Almeida, J; Martins, A;

Publicação
2021 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS (ICARSC)

Abstract

2021

Emergency Landing Spot Detection Algorithm for Unmanned Aerial Vehicles

Autores
Loureiro, G; Dias, A; Martins, A; Almeida, J;

Publicação
REMOTE SENSING

Abstract
The use and research of Unmanned Aerial Vehicle (UAV) have been increasing over the years due to the applicability in several operations such as search and rescue, delivery, surveillance, and others. Considering the increased presence of these vehicles in the airspace, it becomes necessary to reflect on the safety issues or failures that the UAVs may have and the appropriate action. Moreover, in many missions, the vehicle will not return to its original location. If it fails to arrive at the landing spot, it needs to have the onboard capability to estimate the best area to safely land. This paper addresses the scenario of detecting a safe landing spot during operation. The algorithm classifies the incoming Light Detection and Ranging (LiDAR) data and store the location of suitable areas. The developed method analyses geometric features on point cloud data and detects potential right spots. The algorithm uses the Principal Component Analysis (PCA) to find planes in point cloud clusters. The areas that have a slope less than a threshold are considered potential landing spots. These spots are evaluated regarding ground and vehicle conditions such as the distance to the UAV, the presence of obstacles, the area’s roughness, and the spot’s slope. Finally, the output of the algorithm is the optimum spot to land and can vary during operation. The proposed approach evaluates the algorithm in simulated scenarios and an experimental dataset presenting suitability to be applied in real-time operations.

Teses
supervisionadas

2022

Mapas Topológicos para Exploração Robótica de Minas Subterrâneas Submersas

Autor
PEDRO MIGUEL SERRÃO DA VEIGA MARTINS

Instituição
IPP-ISEP

2021

In situ real-time Zooplankton Detection and Classification

Autor
PEDRO NUNO DE QUEIRÓS SALCEDAS DE CARVALHO GERALDES

Instituição
IPP-ISEP

2020

Interface Homem-Máquina Multi Robótica em Unity3D

Autor
RUI RODRIGO SERRA FIGUEIRINHA

Instituição
IPP-ISEP

2020

Sistema Autónomo de Recolha de Informação Genética para Meio Aquático

Autor
PEDRO EMANUEL JORGE BARBOSA

Instituição
IPP-ISEP

2020

Sistema Autónomo de Aquisição de Imagens de Alta Resolução de Plâncton

Autor
JOÃO FILIPE AMORIM RESENDE

Instituição
IPP-ISEP