Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Sobre

Sobre

Investigador em robótica subaquática. Mais informações em http://oceansys.fe.up.pt/

Tópicos
de interesse
Detalhes

Detalhes

019
Publicações

2022

An Autonomous System for Collecting Water Samples from the Surface

Autores
Pinto, AF; Cruz, NA; Ferreira, BM; Abreu, NM; Goncalves, CE; Villa, MP; Matos, AC; Honorio, LD; Westin, LG;

Publicação
OCEANS 2022

Abstract

2022

Design and Experimental Tests of a Buoyancy Change Module for Autonomous Underwater Vehicles

Autores
Carneiro, JF; Pinto, JB; de Almeida, FG; Cruz, NA;

Publicação
ACTUATORS

Abstract
Ocean exploration is of major importance for several reasons, including energy and mineral resource retrieval, sovereignty, and environmental concerns. The use of autonomous underwater vehicles (AUV) has thus been receiving increased attention from the scientific community. In this context, it has been shown that the use of buoyancy change modules (BCMs) can significantly improve the energy efficiency of an AUV. However, the literature regarding the detailed design of these modules is scarce. This paper contributes to this field by describing the development of an electromechanical buoyancy change module prototype to be incorporated into an existing AUV. A detailed description of the constraints and compromises existing in the design of the device components is presented. In addition, the mechanical design of the hull based on FEM simulations is described in detail. The prototype is experimentally tested in a shallow pool where its full functionality is shown. The paper also presents preliminary experimental values of the power consumption of the device and compares them with the ones provided by existing models in the literature.

2022

Genetic Algorithm to Solve Optimal Sensor Placement for Underwater Vehicle Localization with Range Dependent Noises

Autores
Villa, M; Ferreira, B; Cruz, N;

Publicação
SENSORS

Abstract
In source localization problems, the relative geometry between sensors and source will influence the localization performance. The optimum configuration of sensors depends on the measurements used for the source location estimation, how these measurements are affected by noise, the positions of the source, and the criteria used to evaluate the localization performance. This paper addresses the problem of optimum sensor placement in a plane for the localization of an underwater vehicle moving in 3D. We consider sets of sensors that measure the distance to the vehicle and model the measurement noises with distance dependent covariances. We develop a genetic algorithm and analyze both single and multi-objective problems. In the former, we consider as the evaluation metric the arithmetic average along the vehicle trajectory of the maximum eigenvalue of the inverse of the Fisher information matrix. In the latter, we estimate the Pareto front of pairs of common criteria based on the Fisher information matrix and analyze the evolution of the sensor positioning for the different criteria. To validate the algorithm, we initially compare results with a case with a known optimal solution and constant measurement covariances, obtaining deviations from the optimal less than 0.1%. Posterior, we present results for an underwater vehicle performing a lawn-mower maneuver and a spiral descent maneuver. We also present results restricting the allowed positions for the sensors.

2021

Project and Control Allocation of a 3 DoF Autonomous Surface Vessel With Aerial Azimuth Propulsion System

Autores
da Silva, MF; Honorio, LMD; dos Santos, MF; Neto, AFD; Cruz, NA; Matos, ACC; Westin, LGF;

Publicação
IEEE ACCESS

Abstract
To gather hydrological measurements is a difficult task for Autonomous Surface Vessels. It is necessary for precise navigation considering underwater obstacles, shallow and fast water flows, and also mitigate misreadings due to disturbs caused by their propulsion system. To deal with those problems, this paper presents a new topology of an Autonomous Surface Vessel (ASV) based on a catamaran boat with an aerial propulsion system with azimuth control. This set generates an over-actuated 3 Degree of Freedom (DoF) ASV, highly maneuverable and able of operating over the above-mentioned situations. To deal with the high computational cost of the over-actuated control allocation (CA) problem, this paper also proposes a Fast CA (FCA) approach. The FCA breaks the initial nonlinear system into partially-dependent linear subsystems. This approach generates smaller connected systems with overlapping solution spaces, generating fast and robust convergence, especially attractive for embedded control devices. Both proposals, i.e., ASV and FCA, are assessed through mathematical simulations and real scenarios.

2021

Pneuma: entrepreneurial science in the fight against the COVID-19 pandemic - a tale of industrialisation and international cooperation

Autores
Mendonça, JM; Cruz, N; Vasconcelos, D; Sá-Couto, C; Moreira, AP; Costa, P; Mendonça, H; Pereira, A; Naimi, Z; Miranda, V;

Publicação
Journal of Innovation Management

Abstract
When the COVID-19 pandemic hits Portugal in early March 2020, medical doctors, engineers and researchers, with the encouragement of the Northern Region Health Administration, teamed up to develop and build, locally and in a short time, a ventilator that might eventually be used in extreme emergency situations in the hospitals of northern Portugal. This letter tells you the story of Pneuma, a low-cost emergency ventilator designed and built under harsh isolation constraints, that gave birth to derivative designs in Brazil and Morocco, has been industrialized with 200 units being produced and is now looking forward to the certification as a medical device that will possibly support a go-to-market launch. Open intellectual property (IP), multidisciplinarity teamwork, fast prototyping and product engineering have shortened to a few months an otherwise quite longer idea-to-product route, clearly demonstrating that when scientific and engineering knowledge hold hands great challenges can be successfully faced.

Teses
supervisionadas

2021

Information-aware Feature-based Underwater Localization and Planning

Autor
António José Ventura de Oliveira

Instituição
UP-FEUP

2021

Deepwater Intelligent Video Recorder

Autor
Luís Páris Couto Venn Fonseca

Instituição
UP-FEUP

2021

Efficent Verified MPC

Autor
Manuel Luís Magalhães Duarte Correia

Instituição
UP-FCUP

2021

Classificação automática de termogramas do pé diabético usando técnicas de machine learning

Autor
Pedro Miguel Bento Teixeira

Instituição
UP-FEUP

2021

Underwater Localization in Complex Environments

Autor
Maria Sara Delgadinho Noronha

Instituição
UP-FEUP