Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Detalhes

Detalhes

  • Nome

    Susana Alexandra Barbosa
  • Cargo

    Investigador Sénior
  • Desde

    12 janeiro 2015
009
Publicações

2025

The SAIL dataset of marine atmospheric electric field observations over the Atlantic Ocean

Autores
Barbosa, S; Dias, N; Almeida, C; Amaral, G; Ferreira, A; Camilo, A; Silva, E;

Publicação
EARTH SYSTEM SCIENCE DATA

Abstract
A unique dataset of marine atmospheric electric field observations over the Atlantic Ocean is described. The data are relevant not only for atmospheric electricity studies, but more generally for studies of the Earth's atmosphere and climate variability, as well as space-Earth interaction studies. In addition to the atmospheric electric field data, the dataset includes simultaneous measurements of other atmospheric variables, including gamma radiation, visibility, and solar radiation. These ancillary observations not only support interpretation and understanding of the atmospheric electric field data, but also are of interest in themselves. The entire framework from data collection to final derived datasets has been duly documented to ensure traceability and reproducibility of the whole data curation chain. All the data, from raw measurements to final datasets, are preserved in data repositories with a corresponding assigned DOI. Final datasets are available from the Figshare repository (https://figshare.com/projects/SAIL_Data/178500, ), and computational notebooks containing the code used at every step of the data curation chain are available from the Zenodo repository (https://zenodo.org/communities/sail, Project SAIL community, 2025).

2025

Recent decoupling of global mean sea level rise from decadal scale climate variability

Autores
Donner, RV; Barbosa, SM;

Publicação

Abstract

2025

Improving GHG emissions estimates and multidisciplinary climate research using nuclear observations: the NuClim project

Autores
Barbosa, S; Chambers, S;

Publicação

Abstract
Radon (Rn-222) is a unique atmospheric tracer, since it is an inert gaseous radionuclide with a predominantly terrestrial source and a short half-life (3.8232 (8) d), enabling quantification of the relative degree of recent (< 21 d) terrestrial influences on marine air masses. High quality measurements of atmospheric radon activity concentration in remote oceanic locations enable the most accurate identification of baseline conditions. Observations of GHGs under baseline conditions, representative of hemispheric background values, are essential to characterise long-term changes in hemispheric-mean GHG concentrations, differentiate between natural and anthropogenic GHG sources, and improve understanding of the global carbon budget.The EU-funded project NuClim (Nuclear observations to improve Climate research and GHG emission estimates) will establish world-leading high-quality atmospheric measurements of radon activity concentration and of selected GHG concentrations (CO2, and CH4) at a remote oceanic location, the Eastern North Atlantic (ENA) facility, managed by the Atmospheric Radiation Measurement (ARM) programme (Office of Science from the U.S. Department of Energy), located on Graciosa Island (Azores archipelago), near the middle of the north Atlantic Ocean. These observations will provide an accurate, time-varying atmospheric baseline reference for European greenhouse gas (GHG) levels, enabling a clearer distinction between anthropogenic emissions and slowly changing background levels. NuClim will also enhance measurement of atmospheric radon activity concentration at the Mace Head Station, allowing the identification of latitudinal gradients in baseline atmospheric composition, and supporting the evaluation of the performance of GHG mitigation measures for countries in the northern hemisphere.The high-quality nuclear and GHG observations from NuClim, and the resulting classification of terrestrial influences on marine air masses, will assist diverse climate and environmental studies, including the study of pollution events, characterisation of marine boundary layer clouds and aerosols, and exploration of the impact of natural planktonic communities on GHG emissions. This poster presents an overview of NuClim, outlines the project objectives and methodologies, and summarises the relevant data products that will be made available to the climate community.Project NuClim received funding from the EURATOM research and training program 2023-2025 under Grant Agreement No 101166515.

2025

Using nuclear observations to improve climate research and GHG emission estimates – the NuClim project

Autores
Barbosa, S; Chambers, S; Pawlak, W; Fortuniak, K; Paatero, J; Röttger, A; Röttger, S; Chen, X; Melintescu, A; Martin, D; Kikaj, D; Wenger, A; Stanley, K; Ramos, JB; Hatakka, J; Anttila, T; Aaltonen, H; Dias, N; Silva, ME; Castro, J; Lappalainen, HK; Azevedo, E; Kulmala, M;

Publicação
EPJ Nuclear Sciences & Technologies

Abstract
Project NuClim (Nuclear observations to improve Climate research and GHG emission estimates) aims to use high-quality measurements of atmospheric radon activity concentration and ambient radioactivity to advance climate science and improve radiation protection and nuclear surveillance capabilities. It is supported by new metrological capabilities developed in the EMPIR project 19ENV01 traceRadon. This work reviews the scientific objectives of project NuClim in terms of both climate science and radiological protection, and provides an overview of the NuClim field campaign and the various nuclear measurements being implemented within the scope of the project.

2024

SHORT: Evaluating Tools for Enhancing Reproducibility in Computational Scientific Experiments

Autores
Costa, L; Barbosa, S; Cunha, J;

Publicação
PROCEEDINGS OF THE 2ND ACM CONFERENCE ON REPRODUCIBILITY AND REPLICABILITY, ACM REP 2024

Abstract
Ensuring the reproducibility of computational scientific experiments is crucial for advancing research and fostering scientific integrity. However, achieving reproducibility poses significant challenges, particularly in the absence of appropriate software tools to help. This paper addresses this issue by comparing existing tools designed to assist researchers across various fields in achieving reproducibility in their work. We were able to successfully run eight tools and execute them to reproduce three existing experiments from different domains. Our findings show the critical role of technical choices in shaping the capabilities of these tools for reproducibility efforts. By evaluating these tools for replicating experiments, we contribute insights into the current landscape of reproducibility support in scientific research. Our analysis offers guidance for researchers seeking appropriate tools to enhance the reproducibility of their experiments, highlighting the importance of informed technical decisions in facilitating reproducibility across diverse domains.

Teses
supervisionadas

2023

Analysis and classification of marine solar radiation data

Autor
Márcia Silva Leite

Instituição

2021

ClimateCollab: A collaborative graph for reproducible evidence of climate change

Autor
Lázaro Gabriel Barros da Costa

Instituição

2021

Prediction of extreme values in data streams

Autor
Nuno Moura da Costa

Instituição