Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Sobre

Sobre

Nasci no Porto em 1979.  Completei os meus estudos de base (Licenciatura) em Engenharia Electrotecnica e de Computadores no ISEP em 2004. Em 2014 completei o Doutoramento em Electronica e Computadores no Instituto Superior Técnico. Actualmente exerco as funções de investigador sénior no INESC TEC, onde trabalho na área da robótica móvel em projectos de âmbito nacional e internacional.  Sou autor e revisor de várias publicações com arbitragem cientifica no dominio da visão por computador para aplicações de robótica móvel.

Tópicos
de interesse
Detalhes

Detalhes

017
Publicações

2022

Hyperspectral Imaging Zero-Shot Learning for Remote Marine Litter Detection and Classification

Autores
Freitas, S; Silva, H; Silva, E;

Publicação
REMOTE SENSING

Abstract
This paper addresses the development of a novel zero-shot learning method for remote marine litter hyperspectral imaging data classification. The work consisted of using an airborne acquired marine litter hyperspectral imaging dataset that contains data about different plastic targets and other materials and assessing the viability of detecting and classifying plastic materials without knowing their exact spectral response in an unsupervised manner. The classification of the marine litter samples was divided into known and unknown classes, i.e., classes that were hidden from the dataset during the training phase. The obtained results show a marine litter automated detection for all the classes, including (in the worst case of an unknown class) a precision rate over 56% and an overall accuracy of 98.71%.

2022

Feedfirst: Intelligent monitoring system for indoor aquaculture tanks

Autores
Teixeira, B; Lima, AP; Pinho, C; Viegas, D; Dias, N; Silva, H; Almeida, J;

Publicação
2022 OCEANS HAMPTON ROADS

Abstract
The Feedfirst Intelligent Monitoring System is a novel tool for intelligent monitoring of fish nurseries in aquaculture scenarios, mainly focusing on monitoring three essential items: water quality control, biomass estimation, and automated feeding. The system is based on machine vision techniques for fish larvae population size detection, and larvae biomass estimation is monitored through size measurement. We also show that the perception-actuation loop in automated fish tanks can be closed by using the vision system output to influence feeding procedures. The proposed solution was tested in a real tank in an aquaculture setting with real-time performance and logging capabilities.

2021

Remote Hyperspectral Imaging Acquisition and Characterization for Marine Litter Detection

Autores
Freitas, S; Silva, H; Silva, E;

Publicação
REMOTE SENSING

Abstract
This paper addresses the development of a remote hyperspectral imaging system for detection and characterization of marine litter concentrations in an oceanic environment. The work performed in this paper is the following: (i) an in-situ characterization was conducted in an outdoor laboratory environment with the hyperspectral imaging system to obtain the spatial and spectral response of a batch of marine litter samples; (ii) a real dataset hyperspectral image acquisition was performed using manned and unmanned aerial platforms, of artificial targets composed of the material analyzed in the laboratory; (iii) comparison of the results (spatial and spectral response) obtained in laboratory conditions with the remote observation data acquired during the dataset flights; (iv) implementation of two different supervised machine learning methods, namely Random Forest (RF) and Support Vector Machines (SVM), for marine litter artificial target detection based on previous training. Obtained results show a marine litter automated detection capability with a 70-80% precision rate of detection in all three targets, compared to ground-truth pixels, as well as recall rates over 50%.

2021

Deep learning point cloud odometry: Existing approaches and open challenges

Autores
Teixeira, B; Silva, H;

Publicação
U.Porto Journal of Engineering

Abstract
Achieving persistent and reliable autonomy for mobile robots in challenging field mission scenarios is a long-time quest for the Robotics research community. Deep learning-based LIDAR odometry is attracting increasing research interest as a technological solution for the robot navigation problem and showing great potential for the task. In this work, an examination of the benefits of leveraging learning-based encoding representations of real-world data is provided. In addition, a broad perspective of emergent Deep Learning robust techniques to track motion and estimate scene structure for real-world applications is the focus of a deeper analysis and comprehensive comparison. Furthermore, existing Deep Learning approaches and techniques for point cloud odometry tasks are explored, and the main technological solutions are compared and discussed. Open challenges are also laid out for the reader, hopefully offering guidance to future researchers in their quest to apply deep learning to complex 3D non-matrix data to tackle localization and robot navigation problems.

2021

Hyperspectral Imaging System for Marine Litter Detection

Autores
Freitas S.; Silva H.; Almeida C.; Viegas D.; Amaral A.; Santos T.; Dias A.; Jorge P.A.S.; Pham C.K.; Moutinho J.; Silva E.;

Publicação
Oceans Conference Record (IEEE)

Abstract
This work addresses the use of hyperspectral imaging systems for remote detection of marine litter concentrations in oceanic environments. The work consisted on mounting an off-the-shelf hyperspectral imaging system (400-2500 nm) in two aerial platforms: manned and unmanned, and performing data acquisition to develop AI methods capable of detecting marine litter concentrations at the water surface. We performed the campaigns at Porto Pim Bay, Fail Island, Azores, resorting to artificial targets built using marine litter samples.During this work, we also developed a Convolutional Neural Network (CNN-3D), using spatial and spectral information to evaluate deep learning methods to detect marine litter in an automated manner. Results show over 84% overall accuracy (OA) in the detection and classification of the different types of marine litter samples present in the artificial targets.

Teses
supervisionadas

2021

Airborne Hyperspectral Imaging and Spectral Unmixing for Marine Litter Surveying

Autor
Jose Eduardo Santos Maravalhas Silva

Instituição
UP-FEUP

2021

´Marine litter detection via acoustic imaging with a Deep Learning framework

Autor
Pedro Guedes Oliveira

Instituição
UP-FEUP

2020

Deep Learning For Visual Odometry Estimation

Autor
Bernardo Gomes Teixeira

Instituição
UP-FEUP

2017

Deep Learning Unmanned Robotic Hyperspectral Imaging for Sustainable Forests and Water Management

Autor
Sara Freitas

Instituição
UP-FEUP