Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Factos & Números
000
Apresentação

Laboratório de Software Confiável

O HASLab dedica-se à criação e à implementação de sistemas de software confiável, i.e., software correto e resiliente perante falhas e ataques.

De forma a cumprir este grande objetivo, o HASLab opera em três grandes áreas - Cibersegurança, Sistemas Distribuídos e Engenharia de Software.

Engenharia de Software - são explorados métodos, técnicas e ferramentas para o desenvolvimento de software, podendo este ser integrado nas funcionalidades internas de determinados componentes, na sua configuração junto de outros componentes, e também na interação com o utilizador.

Sistemas Distribuídos - com vista a melhorar a confiabilidade e a escalabilidade de software, explorando as propriedades inerentes à distribuição e à replicação de sistemas computacionais.

Cibersegurança - de forma a minimizar a vulnerabilidade dos componentes de software a ataques, com recurso à implementação de estruturas e de protocolos criptográficos com propriedades de segurança formalmente comprovadas.

Através de uma abordagem multidisciplinar que assenta em princípios teóricos comprovados, o HASLab visa disponibilizar soluções - fundamentos teóricos, métodos, linguagens, ferramentas - para o desenvolvimento de sistemas TIC abrangentes, dando garantias aos seus proprietários e utilizadores. Os grandes domínios de aplicação da investigação desenvolvida no HASLab incluem o desenvolvimento de sistemas de software cruciais para garantir a segurança e a proteção, a operacionalização de infraestruturas da nuvem seguras, e a gestão e o tratamento de big data, tendo em conta as questões da privacidade.

Últimas Notícias

Investigação INESC TEC em linguagem de especificação Alloy apresentada em conferência de topo de engenharia de software

No âmbito do trabalho na linguagem e ferramenta de especificação Alloy, uma equipa de investigadores do INESC TEC apresentou a extensão QAlloy na ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE), conferência de topo na área de engenharia de software que decorreu de 14 a 18 de novembro, em Singapura.

22 novembro 2022

Projeto RISC2 distinguido por jornal internacional especializado em computação avançada

O projeto RISC2, que tem como objetivo promover e melhorar a relação entre as comunidades de investigação e inovação da Europa e da América Latina, venceu o HPCwire Editor’s Choice Awards na categoria de Melhor Colaboração HPC.

21 novembro 2022

INESC TEC acolhe alunos do Verão no Campus em Braga

Cerca de 20 alunos do ensino secundário visitaram o Laboratório de Software Confiável (HASLab) do INESC TEC, no âmbito da atividade “Computação sem Fronteiras”, uma das várias que fizeram parte do programa Verão no Campus, iniciativa promovida pela Universidade do Minho, que decorreu de 18 a 22 de julho, no Departamento de Informática (DI) da Universidade do Minho, em Braga.

28 julho 2022

INESC TEC e UMinho recebem Haim Levkowitz, expert mundial da área da computação

O Presidente do Departamento de Informática da Universidade Massachusetts Lowell, Haim Levkowitz, visitou o INESC TEC e a Universidade do Minho, nos dias 20, 23 e 25 de maio, respetivamente, ao abrigo do Staff Mobility for Teaching do programa Erasmus+.

26 maio 2022

Equipa INESC TEC contribui para nova versão de linguagem de modelação Alloy

Os investigadores do Alcino Cunha e Nuno Macedo contribuíram para o desenvolvimento do Alloy 6, a versão mais recente de uma das plataformas de especificação e análise mais utilizadas para a análise formal de designs nas fases iniciais do desenvolvimento de software.

11 maio 2022

007

Projetos Selecionados

BringTrust

Strengthening CI/CD Pipeline Cybersecurity and Safeguarding the Intellectual Property

2025-2028

DisaggregatedHPC

Towards energy-efficient, software-managed resource disaggregation in HPC infrastructures

2025-2026

InfraGov

InfraGov: A Public Framework for Reliable and Secure IT Infrastructure

2025-2026

VeriFixer

VeriFixer: Automated Repair for Verification-Aware Programming Languages

2025-2026

ENSCOMP4

Ensino de Ciência da Computação nas Escolas 4

2024-2025

PFAI4_5eD

Programa de Formação Avançada Industria 4 - 5a edição

2024-2024

QuantELM

QuantELM: from Ultrafast optical processors to Quantum Extreme Learning Machines with integrated optics

2023-2024

Equipa
001

Laboratório

CLOUDinha

Publicações

HASLab Publicações

Ler todas as publicações

2025

Risk Assessment Profiles for Caregiver Burden in Family Caregivers of Persons Living with Alzheimer's Disease: An Exploratory Study with Machine Learning

Autores
Brito, L; Cepa, B; Brito, C; Leite, A; Pereira, MG;

Publicação
EUROPEAN JOURNAL OF INVESTIGATION IN HEALTH PSYCHOLOGY AND EDUCATION

Abstract
Alzheimer's disease (AD) places a profound global challenge, driven by its escalating prevalence and the multifaceted strain it places on individuals, families, and societies. Family caregivers (FCs), who are pivotal in supporting family members with AD, frequently endure substantial emotional, physical, and psychological demands. To better understand the determinants of family caregiving strain, this study employed machine learning (ML) to develop predictive models identifying factors that contribute to caregiver burden over time. Participants were evaluated across sociodemographic clinical, psychophysiological, and psychological domains at baseline (T1; N = 130), six months (T2; N = 114), and twelve months (T3; N = 92). Results revealed three distinct risk profiles, with the first focusing on T2 data, highlighting the importance of distress, forgiveness, age, and heart rate variability. The second profile integrated T1 and T2 data, emphasizing additional factors like family stress. The third profile combined T1 and T2 data with sociodemographic and clinical features, underscoring the importance of both assessment moments on distress at T2 and forgiveness at T1 and T2, as well as family stress at T1. By employing computational methods, this research uncovers nuanced patterns in caregiver burden that conventional statistical approaches might overlook. Key drivers include psychological factors (distress, forgiveness), physiological markers (heart rate variability), contextual stressors (familial dynamics, sociodemographic disparities). The insights revealed enable early identification of FCs at higher risk of burden, paving the way for personalized interventions. Such strategies are urgently needed as AD rates rise globally, underscoring the imperative to safeguard both patients and the caregivers who support them.

2025

Multi-Partner Project: Green.Dat.AI: A Data Spaces Architecture for Enhancing Green AI Services

Autores
Chrysakis I.; Agorogiannis E.; Tsampanaki N.; Vourtzoumis M.; Chondrodima E.; Theodoridis Y.; Mongus D.; Capper B.; Wagner M.; Sotiropoulos A.; Coelho F.A.; Brito C.V.; Protopapas P.; Brasinika D.; Fergadiotou I.; Doulkeridis C.;

Publicação
Proceedings Design Automation and Test in Europe Date

Abstract
The concept of data spaces has emerged as a structured, scalable solution to streamline and harmonize data sharing across established ecosystems. Simultaneously, the rise of AI services enhances the extraction of predictive insights, operational efficiency, and decision-making. Despite the potential of combining these two advancements, integration remains challenging: data spaces technology is still developing, and AI services require further refinement in areas like ML workflow orchestration and energy-efficient ML algorithms. In this paper, we introduce an integrated architectural framework, developed under the Green.Dat.AI project, that unifies the strengths of data spaces and AI to enable efficient, collaborative data sharing across sectors. A practical application is illustrated through a smart farming use case, showcasing how AI services within a data space can advance sustainable agricultural innovation. Integrating data spaces with AI services thus maximizes the value of decentralized data while enhancing efficiency through a powerful combination of data and AI capabilities.

2025

Exploiting Trusted Execution Environments and Distributed Computation for Genomic Association Tests

Autores
Brito C.V.; Ferreira P.G.; Paulo J.T.;

Publicação
IEEE Journal of Biomedical and Health Informatics

Abstract
Breakthroughs in sequencing technologies led to an exponential growth of genomic data, providing novel biological insights and therapeutic applications. However, analyzing large amounts of sensitive data raises key data privacy concerns, specifically when the information is outsourced to untrusted third-party infrastructures for data storage and processing (e.g., cloud computing). We introduce Gyosa, a secure and privacy-preserving distributed genomic analysis solution. By leveraging trusted execution environments (TEEs), Gyosa allows users to confidentially delegate their GWAS analysis to untrusted infrastructures. Gyosa implements a computation partitioning scheme that reduces the computation done inside the TEEs while safeguarding the users' genomic data privacy. By integrating this security scheme in Glow, Gyosa provides a secure and distributed environment that facilitates diverse GWAS studies. The experimental evaluation validates the applicability and scalability of Gyosa, reinforcing its ability to provide enhanced security guarantees.

2025

Machine Learning Regression-Based Prediction for Improving Performance and Energy Consumption in HPC Platforms

Autores
Coelho, M; Ocana, K; Pereira, A; Porto, A; Cardoso, DO; Lorenzon, A; Oliveira, R; Navaux, POA; Osthoff, C;

Publicação
HIGH PERFORMANCE COMPUTING, CARLA 2024

Abstract
High-performance computing is pivotal for processing large datasets and executing complex simulations, ensuring faster and more accurate results. Improving the performance of software and scientific workflows in such environments requires careful analysis of their computational behavior and energy consumption. Therefore, maximizing computational throughput in these environments, through adequate software configuration and resource allocation, is essential for improving performance. The work presented in this paper focuses on leveraging regression-based machine learning and decision trees to analyze and optimize resource allocation in high-performance computing environments based on application's performance and energy metrics. Applied to a bioinformatics case study, these models enable informed decision-making by selecting the appropriate computing resources to enhance the performance of a phylogenomics software. Our contribution is to better explore and understand the efficient resource management of supercomputers, namely Santos Dumont. We show that the predictions for application's execution time using the proposed method are accurate for various amounts of computing nodes, while energy consumption predictions are less precise. The application parameters most relevant for this work are identified and the relative importance of each application parameter to the accuracy of the prediction is analysed.

2025

C'est Tres CHIC: A Compact Password-Authenticated Key Exchange from Lattice-Based KEM

Autores
Arriaga, A; Barbosa, M; Jarecki, S; Skrobot, M;

Publicação
ADVANCES IN CRYPTOLOGY - ASIACRYPT 2024, PT V

Abstract
Driven by the NIST's post-quantum standardization efforts and the selection of Kyber as a lattice-based Key-Encapsulation Mechanism (KEM), severalPasswordAuthenticated KeyExchange (PAKE) protocols have been recently proposed that leverage a KEM to create an efficient, easy-to-implement and secure PAKE. In two recent works, Beguinet et al. (ACNS 2023) and Pan and Zeng (ASIACRYPT 2023) proposed generic compilers that transform KEM into PAKE, relying on an Ideal Cipher (IC) defined over a group. However, although IC on a group is often used in cryptographic protocols, special care must be taken to instantiate such objects in practice, especially when a low-entropy key is used. To address this concern, Dos Santos et al. (EUROCRYPT 2023) proposed a relaxation of the ICmodel under the Universal Composability (UC) framework called Half-Ideal Cipher (HIC). They demonstrate how to construct a UC-secure PAKE protocol, EKE-KEM, from a KEM and a modified 2round Feistel construction called m2F. Remarkably, the m2F sidesteps the use of an IC over a group, and instead employs an IC defined over a fixed-length bitstring domain, which is easier to instantiate. In this paper, we introduce a novel PAKE protocol called CHIC that improves the communication and computation efficiency of EKE-KEM, by avoiding the HIC abstraction. Instead, we split the KEM public key in two parts and use the m2F directly, without further randomization. We provide a detailed proof of the security of CHIC and establish precise security requirements for the underlying KEM, including one-wayness and anonymity of ciphertexts, and uniformity of public keys. Our findings extend to general KEM-based EKE-style protocols and show that a passively secure KEM is not sufficient. In this respect, our results align with those of Pan and Zeng (ASIACRYPT 2023), but contradict the analyses of KEM-to-PAKE compilers by Beguinet et al. (ACNS 2023) and Dos Santos et al. (EUROCRYPT 2023). Finally, we provide an implementation of CHIC, highlighting its minimal overhead compared to the underlying KEM - Kyber. An interesting aspect of the implementation is that we reuse the rejection sampling procedure in Kyber reference code to address the challenge of hashing onto the public key space. As of now, to the best of our knowledge, CHIC stands as the most efficient PAKE protocol from black-box KEM that offers rigorously proven UC security.

Factos & Números

14Artigos em conferências indexadas

2020

1Contratados de I&D

2020

21Investigadores Séniores

2016

Contactos