Cookies
Usamos cookies para melhorar nosso site e a sua experiência. Ao continuar a navegar no site, você aceita a nossa política de cookies. Ver mais
Fechar
  • Menu
Sobre

Sobre

Francisco Cruz nasceu em Portugal (1986), tem um B.Sc. (2007), um M.Sc. (2009) e doutoramento (2016) pela Universidade do Minho e atualmente é investigador de pós-doutoramento no INESC TEC.

Durante o seu mestrado começou a trabalhar no HASLab / INESC TEC, na Universidade do Minho, no projeto financiado pelo HPLabs Innovation Research DC2MS - Serviços Confiáveis de Gerenciamento de Computação em Nuvem (DC2MS - IRA / CW118736). Durante esse período, a sua investigação centrou-se em ambientes "Cloud Computing", mais especificamente nas novas bases de dados NoSQL. Paralelamente, trabalhou na sua tese de mestrado, intitulado SocialSeer, que girou em torno do compartilhamento de metadados e sugestão de dados em sistemas do tipo dropbox.

No seu doutoramento o seu foco de investigação mudou para fornecer uma interface SQL em bases de dados NoSQL, bem como em melhorar a sua elasticidade e desempenho.

Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    Francisco Miguel Cruz
  • Cluster

    Informática
  • Cargo

    Investigador Afiliado
  • Desde

    01 janeiro 2012
003
Publicações

2016

Resource Usage Prediction in Distributed Key-Value Datastores

Autores
Cruz, F; Maia, F; Matos, M; Oliveira, R; Paulo, J; Pereira, J; Vilaca, R;

Publicação
DISTRIBUTED APPLICATIONS AND INTEROPERABLE SYSTEMS, DAIS 2016

Abstract
In order to attain the promises of the Cloud Computing paradigm, systems need to be able to transparently adapt to environment changes. Such behavior benefits from the ability to predict those changes in order to handle them seamlessly. In this paper, we present a mechanism to accurately predict the resource usage of distributed key-value datastores. Our mechanism requires offline training but, in contrast with other approaches, it is sufficient to run it only once per hardware configuration and subsequently use it for online prediction of database performance under any circumstance. The mechanism accurately estimates the database resource usage for any request distribution with an average accuracy of 94 %, only by knowing two parameters: (i) cache hit ratio; and (ii) incoming throughput. Both input values can be observed in real time or synthesized for request allocation decisions. This novel approach is sufficiently simple and generic, while simultaneously being suitable for other practical applications.

2014

PH1: A transactional middleware for NoSQL

Autores
Coelho, F; Cruz, F; Vilaca, R; Pereira, J; Oliveira, R;

Publicação
Proceedings of the IEEE Symposium on Reliable Distributed Systems

Abstract
NoSQL databases opt not to offer important abstractions traditionally found in relational databases in order to achieve high levels of scalability and availability: transactional guarantees and strong data consistency. In this work we propose pH1, a generic middleware layer over NoSQL databases that offers transactional guarantees with Snapshot Isolation. This is achieved in a non-intrusive manner, requiring no modifications to servers and no native support for multiple versions. Instead, the transactional context is achieved by means of a multiversion distributed cache and an external transaction certifier, exposed by extending the client's interface with transaction bracketing primitives. We validate and evaluate pH1 with Apache Cassandra and Hyperdex. First, using the YCSB benchmark, we show that the cost of providing ACID guarantees to these NoSQL databases amounts to 11% decrease in throughput. Moreover, using the transaction intensive TPC-C workload, pH1 presented an impact of 22% decrease in throughput. This contrasts with OMID, a previous proposal that takes advantage of HBase's support for multiple versions, with a throughput penalty of 76% in the same conditions © 2014 IEEE.

2013

MeT

Autores
Cruz, F; Maia, F; Matos, M; Oliveira, R; Paulo, J; Pereira, J; Vilaça, R;

Publicação
Proceedings of the 8th ACM European Conference on Computer Systems - EuroSys '13

Abstract

2013

MeT: Workload aware elasticity for NoSQL

Autores
Cruz, F; Maia, F; Matos, M; Oliveira, R; Paulo, J; Pereira, J; Vilaca, R;

Publicação
Proceedings of the 8th ACM European Conference on Computer Systems, EuroSys 2013

Abstract
NoSQL databases manage the bulk of data produced by modern Web applications such as social networks. This stems from their ability to partition and spread data to all available nodes, allowing NoSQL systems to scale. Unfortunately, current solutions' scale out is oblivious to the underlying data access patterns, resulting in both highly skewed load across nodes and suboptimal node configurations. In this paper, we first show that judicious placement of HBase partitions taking into account data access patterns can improve overall throughput by 35%. Next, we go beyond current state of the art elastic systems limited to uninformed replica addition and removal by: i) reconfiguring existing replicas according to access patterns and ii) adding replicas specifically configured to the expected access pattern. MeT is a prototype for a Cloud-enabled framework that can be used alone or in conjunction with OpenStack for the automatic and heterogeneous reconfiguration of a HBase deployment. Our evaluation, conducted using the YCSB workload generator and a TPC-C workload, shows that MeT is able to i) autonomously achieve the performance of a manual configured cluster and ii) quickly reconfigure the cluster according to unpredicted workload changes. © 2013 ACM.