Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    Rui Pedro Monteiro
  • Cargo

    Assistente de Investigação
  • Desde

    28 outubro 2021
001
Publicações

2023

Flexcomm Simulator: Exploring Energy Flexibility in Software Defined Networks with ns-3

Autores
Monteiro, RPC; Silva, JMC;

Publicação
PROCEEDINGS OF THE 2023 WORKSHOP ON NS-3, WNS3 2023

Abstract
The digitalization of energy generation and distribution systems opens new opportunities for devising network operation and traffic engineering strategies capable of adapting to the energy availability and sources. Despite the potential, developing and testing new approaches are challenging in production environments. Furthermore, no simulators support such integration between the communication infrastructure and the power grid. Thus, this paper introduces Flexcomm Simulator, a tool based on ns-3 that supports developing and assessing multiple strategies toward green networking and communications driven by real-time information from the power grid (i.e., Energy Flexibility). The proof-of-concept results demonstrate this contribution's potential by implementing an energy-aware routing algorithm that adapts to real-world Energy Flexibility data in a Metropolitan Area Network (MAN). Also, it showcases the simulator's capacity to deal with large-scale simulations through MPI-based distributed environments.

2022

Securing MPTCP Connections: A Solution for Distributed NIDS Environments

Autores
Meira, JP; Monteiro, RPC; Silva, JMC;

Publicação
PROCEEDINGS OF THE 2022 47TH IEEE CONFERENCE ON LOCAL COMPUTER NETWORKS (LCN 2022)

Abstract
With continuous technological advancement, multihomed devices are becoming common. They can connect simultaneously to multiple networks through different interfaces. However, since TCP sessions are bound to one interface per device, it hampers applications from taking advantage of all the available connected networks. This has been solved by MPTCP, introduced as a seamless extension to TCP, allowing more reliable sessions and enhanced throughput. However, MPTCP comes with an inherent risk, as it becomes easier to fragment attacks towards evading NIDS. This paper presents a study of how MPTCP can be used to evade NIDS through simple cross-path attacks. It also introduces tools to facilitate assessing MPTCP-based services in diverse network topologies using an emulation environment. Finally, a new solution is proposed to prevent cross-path attacks through uncoordinated networks. This solution consists of a hostlevel plugin that allows MPTCP sessions only through trusted networks, even in the presence of a NAT.