Cookies
Usamos cookies para melhorar nosso site e a sua experiência. Ao continuar a navegar no site, você aceita a nossa política de cookies. Ver mais
Fechar
  • Menu
Sobre
Download foto HD

Sobre

João Saraiva é Professor Auxiliar no Departmento de Informática da Universidade do Minho em Braga, Portugal, e um investigador no  HASLab/INESC TEC. Ele obteve o grau de Mestre pela University do Minho em 1993 e o Doutoramento em Ciências da Computação pela Universidade de Utreque, Holanda em 1999. As suas maiores contribuições científicas são nas áreas de linguagens de programação, análise e transformação de programas  e na programação funcional.  Ele foi supervisor de 4 projetos de  PostDoc (financiados pela FCT), 8 projetos de doutoramento (5 concluidos e 3 em execução)  e mais de 30  teses de Mestrado  (Pos-Bologna). Ele publicou mais de 80  atigos científicos (scopus)  em conferências e revistas. Ele foi membro de mais de 60 comites de programa de eventos internacionais e ainda na avaliação de projetos de 5 agências científicas:  ANII (Uruguai), FRS-FNRS (Belgica), NWO (Holanda), FWF (Austria), e FCT (Portugal).

Ele tem experiências na participação e coordenação de projetos de investigação nas suas área de investigação, quer a nível nacional  (projectos financiados pela FCT: PURe, IVY, AMADEUS, CROSS, SSaaPP, AutoSeer, FATBIT, and GreenSwLab), quer a nível internacional com projetos financiados pela  EPSRC (UK), FLAD/NSF (USA) a pela União Europeia.

João Saraiva é um dos fundadores da pretigiada escola  verão  GTTSE - Grand Timely Topics in Software Engineering (inicialmente designada Generative and Transformational Techniques in Software Engineering), que co-organizou em  2005, 2007, 2009, 2011, and 2015 (volumes 4143, 5235, 6491, and 7680 of LNCS - Tutorial by Springer-Verlag) em  Braga. Ele foi o organizador principal  ETAPS'07, The European Joint Conferences on Theory and Practice of Software, em Braga em 2007,  e um membro do seu comité científico (2007-2012).

Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    João Alexandre Saraiva
  • Cargo

    Investigador Sénior
  • Desde

    01 novembro 2011
  • Nacionalidade

    Portugal
  • Contactos

    +351253604440
    joao.a.saraiva@inesctec.pt
Publicações

2019

Memoized zipper-based attribute grammars and their higher order extension

Autores
Fernandes, JP; Martins, P; Pardo, A; Saraiva, J; Viera, M;

Publicação
Science of Computer Programming

Abstract
Attribute grammars are a powerfull, well-known formalism to implement and reason about programs which, by design, are conveniently modular. In this work we focus on a state of the art zipper-based embedding of classic attribute grammars and higher-order attribute grammars. We improve their execution performance through controlling attribute (re)evaluation by means of memoization techniques. We present the results of our optimizations by comparing their impact in various implementations of different, well-studied, attribute grammars and their Higher-Order extensions. © 2018 Elsevier B.V.

2019

GreenSource: A large-scale collection of android code, tests and energy metrics

Autores
Rua, R; Couto, M; Saraiva, J;

Publicação
IEEE International Working Conference on Mining Software Repositories

Abstract
This paper presents the GreenSource infrastructure: a large body of open source code, executable Android applications, and curated dataset containing energy code metrics. The dataset contains energy metrics obtained by both static analysing the applications' source code and by executing them with available test inputs. To automate the execution of the applications we developed the AnaDroid tool which instruments its code, compiles and executes it with test inputs in any Android device, while collecting energy metrics. GreenSource includes all Android applications included in the MUSE Java source code repository, while AnaDroid implements all Android's energy greedy features described in the literature, GreenSource aims at characterizing energy consumption in the Android ecosystem, providing both Android developers and researchers a setting to reason about energy efficient Android software development. © 2019 IEEE.

2018

jStanley: placing a green thumb on Java collections

Autores
Pereira, R; Simão, P; Cunha, J; Saraiva, J;

Publicação
Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering, ASE 2018, Montpellier, France, September 3-7, 2018

Abstract

2018

Proceedings of the 6th International Workshop on Green and Sustainable Software, GREENS@ICSE 2018, Gothenburg, Sweden, May 27, 2018

Autores
Malavolta, I; Kazman, R; Saraiva, J;

Publicação
GREENS@ICSE

Abstract

2017

Products go Green: Worst-Case Energy Consumption in Software Product Lines

Autores
Couto, M; Borba, P; Cunha, J; Fernandes, JP; Pereira, R; Saraiva, J;

Publicação
Proceedings of the 21st International Systems and Software Product Line Conference, SPLC 2017, Volume A, Sevilla, Spain, September 25-29, 2017

Abstract
The optimization of software to be (more) energy efficient is becoming a major concern for the software industry. Although several techniques have been presented to measure energy consumption for software, none has addressed software product lines (SPLs). Thus, to measure energy consumption of a SPL, the products must be generated and measured individually, which is too costly. In this paper, we present a technique and a prototype tool to statically estimate the worst case energy consumption for SPL. The goal is to provide developers with techniques and tools to reason about the energy consumption of all products in a SPL, without having to produce, run and measure the energy in all of them. Our technique combines static program analysis techniques and worst case execution time prediction with energy consumption analysis. This technique analyzes all products in a feature-sensitive manner, that is, a feature used in several products is analyzed only once, while the energy consumption is estimated once per product. We implemented our technique in a tool called Serapis. We did a preliminary evaluation using a product line for image processing implemented in C. Our experiments considered 7 products from such line and our initial results show that the tool was able to estimate the worst-case energy consumption with a mean error percentage of 9.4% and standard deviation of 6.2% when compared with the energy measured when running the products. © 2017 ACM.

Teses
supervisionadas

2017

Energy Analysis in the CodeCompass system

Autor

Instituição
UM

2015

Catálogo de Usability Smells

Autor
Diogo Francisco de Carvalho Almeida

Instituição
UM

2015

Evolução de Folhas de Cálculo Baseadas em Models num Ambiente Colaborativo

Autor
Jorge Cunha Mendes

Instituição
UM

2015

Energy-Aware Software Product Lines

Autor
Marco Rafael Linhares Couto

Instituição
UM

2015

Analyzing and Optimizing Abnormal Energy Consumption in Software Systems

Autor
Rui Alexandre Pereira

Instituição
UM