Cookies
Usamos cookies para melhorar nosso site e a sua experiência. Ao continuar a navegar no site, você aceita a nossa política de cookies. Ver mais
Fechar
  • Menu
Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    Hugo Pereira Pacheco
  • Cluster

    Informática
  • Cargo

    Investigador
  • Desde

    01 novembro 2011
001
Publicações

2018

Enforcing ideal-world leakage bounds in real-world secret sharing MPC frameworks

Autores
Almeida, JB; Barbosa, M; Barthe, G; Pacheco, H; Pereira, V; Portela, B;

Publicação
Proceedings - IEEE Computer Security Foundations Symposium

Abstract
We give a language-based security treatment of domain-specific languages and compilers for secure multi-party computation, a cryptographic paradigm that enables collaborative computation over encrypted data. Computations are specified in a core imperative language, as if they were intended to be executed by a trusted-third party, and formally verified against an information-flow policy modelling (an upper bound to) their leakage. This allows non-experts to assess the impact of performance-driven authorized disclosure of intermediate values. Specifications are then compiled to multi-party protocols. We formalize protocol security using (distributed) probabilistic information-flow and prove security-preserving compilation: Protocols only leak what is allowed by the source policy. The proof exploits a natural but previously missing correspondence between simulation-based cryptographic proofs and (composable) probabilistic non-interference. Finally, we extend our framework to justify leakage cancelling, a domain-specific optimization that allows to first write an efficient specification that fails to meet the allowed leakage upper-bound, and then apply a probabilistic pre-processing that brings leakage to the acceptable range. © 2018 IEEE.

2018

Teaching how to program using automated assessment and functional glossy games (experience report)

Autores
Almeida, JB; Cunha, A; Macedo, N; Pacheco, H; Proenca, J;

Publicação
Proceedings of the ACM on Programming Languages

Abstract

2017

Towards new data management platforms for a DSO as market enabler – UPGRID Portugal demo

Autores
Alonso, A; Couto, R; Pacheco, H; Bessa, R; Gouveia, C; Seca, L; Moreira, J; Nunes, P; Matos, PG; Oliveira, A;

Publicação
CIRED - Open Access Proceedings Journal

Abstract

2017

Jasmin: High-Assurance and High-Speed Cryptography

Autores
Almeida, JB; Barbosa, M; Barthe, G; Blot, A; Grégoire, B; Laporte, V; Oliveira, T; Pacheco, H; Schmidt, B; Strub, PY;

Publicação
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017

Abstract

2016

A Tool-Chain for High-Assurance Cryptographic Software

Autores
Almeida, J; Barbosa, M; Pacheco, H; Pereira, V;

Publicação
ERCIM NEWS

Abstract
Cryptography is an inherently interdisciplinary area and the development of high-quality cryptographic software is a time-consuming task drawing on skills from mathematics, computer science and electrical engineering, only achievable by highly skilled programmers. The challenge is to map high-level cryptographic specifications phrased using mathematical abstractions into efficient implementations at the level of C or assembly that can be deployed on a target computational platform, whilst adhering to the specification both in terms of correctness and security. The High Assurance Software Laboratory at INESC-TEC maintains a domain-specific toolchain for the specification, implementation and verification of cryptographic software centred on CAO, a cryptography analyses and operations-aware language.