Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    Ricardo Gonçalves Macedo
  • Cluster

    Informática
  • Cargo

    Investigador Auxiliar
  • Desde

    01 dezembro 2016
003
Publicações

2022

Accelerating Deep Learning Training Through Transparent Storage Tiering

Autores
Dantas, M; Leitao, D; Cui, P; Macedo, R; Liu, XL; Xu, WJ; Paulo, J;

Publicação
2022 22ND IEEE/ACM INTERNATIONAL SYMPOSIUM ON CLUSTER, CLOUD AND INTERNET COMPUTING (CCGRID 2022)

Abstract

2022

PAIO: General, Portable I/O Optimizations With Minor Application Modifications

Autores
Macedo, R; Tanimura, Y; Haga, J; Chidambaram, V; Pereira, J; Paulo, J;

Publicação
20th USENIX Conference on File and Storage Technologies, FAST 2022, Santa Clara, CA, USA, February 22-24, 2022

Abstract

2022

Protecting Metadata Servers From Harm Through Application-level I/O Control

Autores
Macedo, R; Miranda, M; Tanimura, Y; Haga, J; Ruhela, A; Harrell, SL; Evans, RT; Paulo, J;

Publicação
2022 IEEE INTERNATIONAL CONFERENCE ON CLUSTER COMPUTING (CLUSTER 2022)

Abstract

2022

Protecting Metadata Servers From Harm Through Application-level I/O Control

Autores
MacEdo, R; Miranda, M; Tanimura, Y; Haga, J; Ruhela, A; Harrell, SL; Evans, RT; Paulo, J;

Publicação
Proceedings - IEEE International Conference on Cluster Computing, ICCC

Abstract
Modern large-scale I/O applications that run on HPC infrastructures are increasingly becoming metadata-intensive. Unfortunately, having multiple concurrent applications submitting massive amounts of metadata operations can easily saturate the shared parallel file system's metadata resources, leading to unresponsiveness of the storage backend and overall performance degradation. To address these challenges, we present Padll, a storage middleware that enables system administrators to proactively control and ensure QoS over metadata workflows in HPC storage systems. We demonstrate its performance and feasibility by controlling the rate of both synthetic and realistic I/O workloads. Results show that Padll can dynamically control metadata-aggressive workloads, prevent I/O burstiness, and ensure I/O fairness and prioritization. © 2022 IEEE.

2021

BDUS: implementing block devices in user space

Autores
Faria, A; Macedo, R; Pereira, J; Paulo, J;

Publicação
SYSTOR '21: The 14th ACM International Systems and Storage Conference, Haifa, Israel, June 14-16, 2021.

Abstract

Teses
supervisionadas

2018

Mecanismo de Recuperação de Falhas em Sistemas de Ficheiros Distribuídos

Autor
Renato Carreiro Rebelo

Instituição
UM

2018

Sistema Autónomo e Configurável de Armazenamento Distribuído

Autor
Manuel Castro Freitas

Instituição
UM