Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About
Download Photo HD

About

Ricardo Bessa was born in 1983 in Viseu, received his Licenciado (five-year) degree from the Faculty of Engineering of the University of Porto, Portugal (FEUP) in 2006 in Electrical and Computer Engineering. In 2008, he received the M.Sc. degree in Data Analysis and Decision Support Systems on the Faculty of Economics of the University of Porto (FEP). He obtained his Ph.D. degree in the Doctoral Program in Sustainable Energy Systems (MIT Portugal) at FEUP in 2013. Currently, he is a Senior Researcher and Area Manager at INESC TEC in its Center for Power and Energy Systems. 

His research interests include renewable energy forecasting, electric vehicles, data mining and decision-making under risk. He worked in several international projects such as the European Projects FP6 ANEMOS.plus, FP7 SuSTAINABLE, FP7 EvolvDSO, Horizon 2020 UPGRID, Horizon 2020 InteGrid and an international collaboration with Argonne National Laboratory for the U.S. Department of Energy. At the national level he participated in the development of renewable energy forecasting systems and consultant services about energy storage.

He is co-authors of more than 32 journal papers and 61 conference papers.

Interest
Topics
Details

Details

  • Name

    Ricardo Jorge Bessa
  • Cluster

    Power and Energy
  • Role

    Centre Coordinator
  • Since

    01st February 2006
041
Publications

2020

Distributed multi-period three-phase optimal power flow using temporal neighbors

Authors
Pinto, R; Bessa, RJ; Sumaili, J; Matos, MA;

Publication
Electric Power Systems Research

Abstract
The penetration of distributed generation in medium (MV) and low (LV) voltage distribution grids has been steadily increasing every year in multiple countries, thus creating new technical challenges in grid operation and motivating developments in distributed optimization for flexibility management. The traditional centralized optimal power flow (OPF) algorithm can solve technical constraints violation. However, computational efficiency, new technologies (e.g., edge computing) and control architectures (e.g., web-of-cells) are demanding for distributed approaches. This work formulates a novel distributed multi-period OPF for three-phase unbalanced grids that is essential when integrating energy storage units in operational planning (e.g., day-ahead) of LV or local energy community grids. The decentralized constrained optimization problem is solved with the alternating direction method of multipliers (ADMM) adapted for unbalanced LV grids and multi-period optimization problems. A 33-bus LV distribution grid is used as a case-study in order to define optimal battery storage scheduling along a finite time horizon that minimizes overall grid operational costs, while complying with technical constraints of the grid (e.g., voltage and current limits) and battery state-of-charge constraints. © 2020

2020

The future of forecasting for renewable energy

Authors
Sweeney, C; Bessa, RJ; Browell, J; Pinson, P;

Publication
WILEY INTERDISCIPLINARY REVIEWS-ENERGY AND ENVIRONMENT

Abstract
Forecasting for wind and solar renewable energy is becoming more important as the amount of energy generated from these sources increases. Forecast skill is improving, but so too is the way forecasts are being used. In this paper, we present a brief overview of the state-of-the-art of forecasting wind and solar energy. We describe approaches in statistical and physical modeling for time scales from minutes to days ahead, for both deterministic and probabilistic forecasting. Our focus changes then to consider the future of forecasting for renewable energy. We discuss recent advances which show potential for great improvement in forecast skill. Beyond the forecast itself, we consider new products which will be required to aid decision making subject to risk constraints. Future forecast products will need to include probabilistic information, but deliver it in a way tailored to the end user and their specific decision making problems. Businesses operating in this sector may see a change in business models as more people compete in this space, with different combinations of skills, data and modeling being required for different products. The transaction of data itself may change with the adoption of blockchain technology, which could allow providers and end users to interact in a trusted, yet decentralized way. Finally, we discuss new industry requirements and challenges for scenarios with high amounts of renewable energy. New forecasting products have the potential to model the impact of renewables on the power system, and aid dispatch tools in guaranteeing system security. This article is categorized under: Energy Infrastructure > Systems and Infrastructure Wind Power > Systems and Infrastructure Photovoltaics > Systems and Infrastructure

2020

Extreme Quantiles Dynamic Line Rating Forecasts and Application on Network Operation

Authors
Dupin, R; Cavalcante, L; Bessa, RJ; Kariniotakis, G; Michiorri, A;

Publication
Energies

Abstract
This paper presents a study on dynamic line rating (DLR) forecasting procedure aimed at developing a new methodology able to forecast future ampacity values for rare and extreme events. This is motivated by the belief that to apply DLR network operators must be able to forecast their values and this must be based on conservative approaches able to guarantee the safe operation of the network. The proposed methodology can be summarised as follows: firstly, probabilistic forecasts of conductors’ ampacity are calculated with a non-parametric model, secondly, the lower part of the distribution is replaced with a new distribution calculated with a parametric model. The paper presents also an evaluation of the proposed methodology in network operation, suggesting an application method and highlighting the advantages. The proposed forecasting methodology delivers a high improvement of the lowest quantiles’ reliability, allowing perfect reliability for the 1% quantile and a reduction of roughly 75% in overconfidence for the 0.1% quantile.

2019

Optimal bidding strategy for variable-speed pump storage in day-ahead and frequency restoration reserve markets

Authors
Filipe, J; Bessa, RJ; Moreira, C; Silva, B;

Publication
Energy Systems

Abstract

2019

Through the looking glass: Seeing events in power systems dynamics

Authors
Miranda, V; Cardoso, PA; Bessa, RJ; Decker, I;

Publication
International Journal of Electrical Power & Energy Systems

Abstract

Supervised
thesis

2018

Evaluating the Economic Impact of Tertiary Reserve Exchanges Between Iberian TSO: Essay on European Energy Market Integration

Author
Manuel Fernando Moreira de Sá Cruz

Institution
UP-FEUP

2018

Detecção Inteligente de Falha de Iluminação Parcial

Author
Orlanda Alice Moreira Neto Mendes de Sousa

Institution
UP-FEUP

2018

Laser diode pulse driver

Author
Francisco João Cunha Dias

Institution
UP-FEUP

2018

Sistema de Controlo de Velocidade do Motor de Relutância Comutado

Author
Manuel Fernando Sequeira Pereira

Institution
UP-FEUP

2018

Topology Control of Flying Backhaul Mesh Networks

Author
Eduardo Nuno Moreira Soares de Almeida

Institution
UP-FEUP