Cookies Policy
We use cookies to improve our site and your experience. By continuing to browse our site you accept our cookie policy. Find out More
Close
  • Menu
About

About

Luís F. Rocha, Ph.D. degree in Electrical and Computer Engineering  in Faculty of Engineering University of Porto and since 2010 researcher at INESC, Centre for Robotics in Industry and Intelligent Systems. His PhD thesis is titled "Object Recognition and Pose Estimation in Flexible Robotic Cells". His main research interests are focused in the flexibility enhancement of industrial robotic cells, as in terms of industrial manipulators programming procedure as on improving their perception skills.

Interest
Topics
Details

Details

005
Publications

2019

Online inspection system based on machine learning techniques: real case study of fabric textures classification for the automotive industry

Authors
Malaca, P; Rocha, LF; Gomes, D; Silva, J; Veiga, G;

Publication
Journal of Intelligent Manufacturing

Abstract
This paper focus on the classification, in real-time and under uncontrolled lighting, of fabric textures for the automotive industry. Many industrial processes have spatial constraints that limit the effective control of illumination of their vision based systems, hindering their effectiveness. The ability to overcome these problems using robust classification methods with suitable pre-processing techniques and choice of characteristics will increase the efficiency of this type of solutions with obvious production gains and thus economical. For this purpose, this paper studied and analyzed various pre-processing techniques, and selected the most appropriate fabric characteristics for the considered industrial case scenario. The methodology followed was based on the comparison of two different machine learning classifiers, ANN and SVM, using a large set of samples with a large variability of lightning conditions to faithfully simulate the industrial environment. The obtained solution shows the sensibility of ANN over SVM considering the number of features and the size of the training set, showing the better effectiveness and robustness of the last. The characteristics vector uses histogram equalization, Laws filter and Sobel filter, and multi-scale analysis. By using a correlation based method was possible to reduce the number of features used, achieving a better balanced between processing time and classification ratio. © 2016 Springer Science+Business Media New York

2019

Map-Matching Algorithms for Robot Self-Localization: A Comparison Between Perfect Match, Iterative Closest Point and Normal Distributions Transform

Authors
Sobreira, H; Costa, CM; Sousa, I; Rocha, L; Lima, J; Farias, PCMA; Costa, P; Paulo Moreira, AP;

Publication
Journal of Intelligent and Robotic Systems: Theory and Applications

Abstract
The self-localization of mobile robots in the environment is one of the most fundamental problems in the robotics navigation field. It is a complex and challenging problem due to the high requirements of autonomous mobile vehicles, particularly with regard to the algorithms accuracy, robustness and computational efficiency. In this paper, we present a comparison of three of the most used map-matching algorithms applied in localization based on natural landmarks: our implementation of the Perfect Match (PM) and the Point Cloud Library (PCL) implementation of the Iterative Closest Point (ICP) and the Normal Distribution Transform (NDT). For the purpose of this comparison we have considered a set of representative metrics, such as pose estimation accuracy, computational efficiency, convergence speed, maximum admissible initialization error and robustness to the presence of outliers in the robots sensors data. The test results were retrieved using our ROS natural landmark public dataset, containing several tests with simulated and real sensor data. The performance and robustness of the Perfect Match is highlighted throughout this article and is of paramount importance for real-time embedded systems with limited computing power that require accurate pose estimation and fast reaction times for high speed navigation. Moreover, we added to PCL a new algorithm for performing correspondence estimation using lookup tables that was inspired by the PM approach to solve this problem. This new method for computing the closest map point to a given sensor reading proved to be 40 to 60 times faster than the existing k-d tree approach in PCL and allowed the Iterative Closest Point algorithm to perform point cloud registration 5 to 9 times faster. © 2018 Springer Science+Business Media B.V., part of Springer Nature

2018

Automatic generation of disassembly sequences and exploded views from solidworks symbolic geometric relationships

Authors
Costa, CM; Veiga, G; Sousa, A; Rocha, LF; Oliveira, EC; Cardoso, HL; Thomas, U;

Publication
2018 IEEE International Conference on Autonomous Robot Systems and Competitions, ICARSC 2018, Torres Vedras, Portugal, April 25-27, 2018

Abstract

2017

Beam for the steel fabrication industry robotic systems

Authors
Rocha, LF; Tavares, P; Malaca, P; Costa, C; Silva, J; Veiga, G;

Publication
ISARC 2017 - Proceedings of the 34th International Symposium on Automation and Robotics in Construction

Abstract
In this paper, we present a comparison between the older DSTV file format and the newer version of the IFC standard, dedicating special attention of its impact in the robotization of welding and cutting processes in the steel structure fabrication industry. In the last decade, we have seen in this industry a significant increase in the request for automation. These new requirements are imposed by a market focused on the productivity enhancement through automation. Because of this paradigm change, the information structure and workflow provided by the DSTV format needed to be revised, namely the one related with the plan and management of steel fabrication processes. Therefore, with this work we enhance the importance of the increased digitalization of information that the newer version of the IFC standard provide, by showing how this information can be used to develop advanced robotic cells. More in detail, we will focus on the automatic generation of robot welding and cutting trajectories, and in the automatic part assembly planning during components fabrications. Besides these advantages, as this information is normally described having as base a perfect CAD model of the metallic structure, the resultant robot trajectories will have some dimensional error when fitted with the real physical component. Hence, we also present some automatic approaches based on a laser scanner and simple heuristics to overcome this limitations.

2017

Offline Programming of Collision Free Trajectories for Palletizing Robots

Authors
Silva, R; Rocha, LF; Relvas, P; Costa, P; Silva, MF;

Publication
ROBOT 2017: Third Iberian Robotics Conference - Advances in Intelligent Systems and Computing

Abstract