Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

Luís F. Rocha, Ph.D. degree in Electrical and Computer Engineering  in Faculty of Engineering University of Porto and since 2010 researcher at INESC, Centre for Robotics in Industry and Intelligent Systems. His PhD thesis is titled "Object Recognition and Pose Estimation in Flexible Robotic Cells". His main research interests are focused in the flexibility enhancement of industrial robotic cells, as in terms of industrial manipulators programming procedure as on improving their perception skills.

Interest
Topics
Details

Details

039
Publications

2022

An overview of pruning and harvesting manipulators

Authors
Tinoco, V; Silva, MF; Santos, FN; Valente, A; Rocha, LF; Magalhaes, SA; Santos, LC;

Publication
INDUSTRIAL ROBOT-THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH AND APPLICATION

Abstract
Purpose The motivation for robotics research in the agricultural field has sparked in consequence of the increasing world population and decreasing agricultural labor availability. This paper aims to analyze the state of the art of pruning and harvesting manipulators used in agriculture. Design/methodology/approach A research was performed on papers that corresponded to specific keywords. Ten papers were selected based on a set of attributes that made them adequate for review. Findings The pruning manipulators were used in two different scenarios: grapevines and apple trees. These manipulators showed that a light-controlled environment could reduce visual errors and that prismatic joints on the manipulator are advantageous to obtain a higher reach. The harvesting manipulators were used for three types of fruits: strawberries, tomatoes and apples. These manipulators revealed that different kinematic configurations are required for different kinds of end-effectors, as some of these tools only require movement in the horizontal axis and others are required to reach the target with a broad range of orientations. Originality/value This work serves to reduce the gap in the literature regarding agricultural manipulators and will support new developments of novel solutions related to agricultural robotic grasping and manipulation.

2022

Bin Picking Approaches Based on Deep Learning Techniques: A State-of-the-Art Survey

Authors
Cordeiro, A; Rocha, LF; Costa, C; Costa, P; Silva, MF;

Publication
2022 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS (ICARSC)

Abstract

2022

Industrial robot programming by demonstration using stereoscopic vision and inertial sensing

Authors
de Souza, JPC; Amorim, AM; Rocha, LF; Pinto, VH; Moreira, AP;

Publication
INDUSTRIAL ROBOT-THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH AND APPLICATION

Abstract
Purpose The purpose of this paper is to present a programming by demonstration (PbD) system based on 3D stereoscopic vision and inertial sensing that provides a cost-effective pose tracking system, even during error-prone situations, such as camera occlusions. Design/methodology/approach The proposed PbD system is based on the 6D Mimic innovative solution, whose six degrees of freedom marker hardware had to be revised and restructured to accommodate an IMU sensor. Additionally, a new software pipeline was designed to include this new sensing device, seeking the improvement of the overall system's robustness in stereoscopic vision occlusion situations. Findings The IMU component and the new software pipeline allow the 6D Mimic system to successfully maintain the pose tracking when the main tracking tool, i.e. the stereoscopic vision, fails. Therefore, the system improves in terms of reliability, robustness, and accuracy which were verified by real experiments. Practical implications Based on this proposal, the 6D Mimic system reaches a reliable and low-cost PbD methodology. Therefore, the robot can accurately replicate, on an industrial scale, the artisan level performance of highly skilled shop-floor operators. Originality/value To the best of the authors' knowledge, the sensor fusion between stereoscopic images and IMU applied to robot PbD is a novel approach. The system is entirely designed aiming to reduce costs and taking advantage of an offline processing step for data analysis, filtering and fusion, enhancing the reliability of the PbD system.

2022

Towards a Closed-loop Neuro-Robotic Approach to DBS Electrode Implantation based on Real-Time Wrist Rigidity Evaluation

Authors
Baptista T.S.; Rito M.; Chamadoira C.; Rocha L.F.; Evans G.; Cunha J.P.S.;

Publication
Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS

Abstract
The iHandU system is a wearable device that quantitatively evaluates changes in wrist rigidity during Deep Brain Stimulation (DBS) surgery, allowing clinicians to find optimal stimulation settings that reduce patient symptoms. Robotic accuracy is also especially relevant in DBS surgery, as accurate electrode placement is required to increase effectiveness and reduce side effects. The main goal of this work is to integrate the advantages of each system in a closed-loop system between an industrial robot and the iHandU system. For this purpose, a comparative analysis of a Leksell stereotactic frame and neuro-robotic system accuracies was performed using a lab-made phantom. The neuro-robotic system reached 90% of trajectories, while the stereotactic frame reached all trajectories. There are significant differences in accuracy errors between these trajectories (p < 0.0001), which can be explained by the high correlation between the neuro-robotic system errors and the distance from the trajectory to the origin of the Leksell coordinate system (?=0.72). Overall accuracy is comparable to existing neuro-robotic systems, achieving a deviation of (1.0 ± 0.5) mm at the target point. The accuracy of DBS electrode positioning and stimulation parameters choice leads to better long-term clinical outcomes in Parkinson's disease patients. Our neuro-robotic system combines real-time feedback assessment of the patient's symptomatic response and automatic positioning of the DBS electrode in a specific brain area.

2021

Reconfigurable Grasp Planning Pipeline with Grasp Synthesis and Selection Applied to Picking Operations in Aerospace Factories

Authors
de Souza, JPC; Costa, CM; Rocha, LF; Arrais, R; Moreira, AP; Pires, EJS; Boaventura Cunha, J;

Publication
ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING

Abstract