Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Sobre

Sobre

Luis Rocha doutorado em Engenharia Electrotécnica e de Computadores pela Faculdade de Engenharia da Universidade do Porto em 2014. É investigador do INESC TEC desde 2010 e é actualmente responsável pela área de investigação de manipuladores industriais no Centro de Robótica Industrial e Sistemas Inteligentes (CRIIS ). Publicou mais de 40 artigos em revistas científicas internacionais e em conferências. Os seus principais interesses de investigação focam-se no desenvolvimento de sistemas robóticos industriais mais ágeis e centrados no ser humano, nomeadamente via a investigação de novos mecanismos interação homem-robô, novas metodologias de programação de robôs mais simplificadas e sistemas avançados de perceção. Foi coordenador da equipa do INESC que participou nos seguintes projetos: H2020 MARI4_YARD, Xweld (H2020 Trinitiy Cascade Funding), AI4R.WELD (H2020 ZDMP Cascade Funding), Interreg POCTEC 2014-2020 Manufactur4.0, P2020 PRODUTECH4S&C e PRODUTECH -SIF.

Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    Luís Freitas Rocha
  • Cargo

    Coordenador de Centro
  • Desde

    01 setembro 2010
053
Publicações

2026

Active learning for industrial defect detection: a study on hybrid sampling strategies

Autores
Gonzalez, DG; Nascimento, R; Rocha, CD; Silva, MF; Filipe, V; Rocha, LF; Magalhaes, LG; Cunha, A;

Publicação
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY

Abstract
In modern industrial environments, ensuring the quality of manufactured components is critical, particularly when dealing with reflective surfaces that hinder conventional inspection techniques. Although deep learning-based methods offer robust solutions for visual defect detection, their performance often hinges on the availability of substantial annotated datasets. In industrial scenarios, labeling such datasets is costly and time-consuming. This study investigates applying sample selection techniques to reduce annotation efforts for porosity detection on machined aluminium parts. Several selection strategies were evaluated using a real-world dataset composed of high-resolution images, including uncertainty, diversity, random-based criteria, and hybrid combinations. The best-performing strategy, which combined entropy-based uncertainty, spatial diversity, and random-based, achieved an F1-score of 86.70% and a recall of 82.99% after ten iterations using only 2,400 annotated images, corresponding to 66.67% of the active learning pool. Although the fully supervised model achieved an F1-score of 88.84% and a recall of 86.30%, the proposed approach proved a competitive alternative. These results demonstrate that selective data annotation can significantly reduce labeling effort while maintaining reliable performance in defect detection, even under the challenging conditions posed by reflective industrial parts.

2026

A review of visual perception for robotic bin-picking

Autores
Cordeiro, A; Rocha, LF; Boaventura-Cunha, J; Figueiredo, D; Souza, JP;

Publicação
ROBOTICS AND AUTONOMOUS SYSTEMS

Abstract
Robotic bin-picking is a critical operation in modern industry, which is characterised by the detection, selection, and placement of items from a disordered and cluttered environment, which can be boundary limited or not, e.g. bins, boxes or containers. In this context, perception systems are employed to localise, detect and estimate grasping points. Despite the considerable progress made, from analytical approaches to recent deep learning methods, challenges still remain. This is evidenced by the growing innovation proposing distinct solutions. This paper aims to review perception methodologies developed since 2009, providing detailed descriptions and discussions of their implementation. Additionally, it presents an extensive study, detailing each work, along with a comprehensive overview of the advancements in bin-picking perception.

2025

Towards an Artificial Intelligence System for Automated Accessory Removal in Textile Recycling: Detecting Textile Fasteners

Autores
Lopes D.; Silva M.F.; Rocha L.F.; Filipe V.;

Publicação
IEEE International Conference on Emerging Technologies and Factory Automation ETFA

Abstract
The textile industry faces economic and environmental challenges due to low recycling rates and contamination from fasteners like buttons, rivets, and zippers. This paper proposes an Red, Green, Blue (RGB) vision system using You Only Look Once version 11 (YOLOv11) with a sliding window technique for automated fastener detection. The system addresses small object detection, occlusion, and fabric variability, incorporating Grounding DINO for garment localization and U2-Net for segmentation. Experiments show the sliding window method outperforms full-image detection for buttons and rivets (precision 0.874, recall 0.923), while zipper detection is less effective due to dataset limitations. This work advances scalable AI-driven solutions for textile recycling, supporting circular economy goals. Future work will target hidden fasteners, dataset expansion and fastener removal.

2025

Quality Inspection on Transparent and Reflective Parts: A Systematic Review

Autores
Nascimento, R; Gonzalez, DG; Pires, EJS; Filipe, V; Silva, MF; Rocha, LF;

Publicação
IEEE ACCESS

Abstract
The increasing demand for automated quality inspection in modern industry, particularly for transparent and reflective parts, has driven significant interest in vision-based technologies. These components pose unique challenges due to their optical properties, which often hinder conventional inspection techniques. This systematic review analyzes 24 peer-reviewed studies published between 2015 and 2025, aiming to assess the current state of the art in computer vision-based inspection systems tailored to such materials. The review synthesizes recent advancements in imaging setups, illumination strategies, and deep learning-based defect detection methods. It also identifies key limitations in current approaches, particularly regarding robustness under variable industrial conditions and the lack of standardized benchmarks. By highlighting technological trends and research gaps, this work offers valuable insights and directions for future research-emphasizing the need for adaptive, scalable, and industry-ready solutions to enhance the reliability and effectiveness of inspection systems for transparent and reflective parts.

2025

Robot Path Planning: from Analytical to Computer Intelligence Approaches

Autores
Dias, PA; de Souza, JPC; Pires, EJS; Filipe, V; Figueiredo, D; Rocha, LF; Silva, MF;

Publicação
JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS

Abstract
In an era where robots are becoming an integral part of human quotidian activities, understanding how they function is crucial. Among the inherent building complexities, from electronics to mechanics, path planning emerges as a universal aspect of robotics. The primary contribution of this work is to provide an overview of the current state of robot path planning topics and a comparison between those same algorithms and its inherent characteristics. The path planning concept relies on the process by which an algorithm determines a collision-free path between a start and an end point, optimizing parameters such as energy consumption and distance. The quest for the most effective path planning method has been a long-standing discussion, as the choice of method is highly dependent on the specific application. This review consolidates and elucidates the categories of path planning methods, specifically classical or analytical methods, and computer intelligence methods. In addition, the operational principles of these categories will be explored, discussing their respective advantages and disadvantages, and reinforcing these discussions with relevant studies in the field. This work will focus on the most prevalent and recognized methods within the robotics path planning problem, being mobile robotics or manipulator arms, including Cell Decomposition, A*, Probabilistic Roadmaps, Rapidly-exploring Random Trees, Genetic Algorithms, Particle Swarm Optimization, Ant Colony Optimization, Artificial Potential Fields, Fuzzy, and Neural Networks. Following the detailed explanation of these methods, a comparative analysis of their advantages and drawbacks is organized in a comprehensive table. This comparison will be based on various quality metrics, such as the type of trajectory provided (global or local), the scenario implementation type (real or simulated scenarios), testing environments (static or dynamic), hybrid implementation possibilities, real-time implementation, completeness of the method, consideration of the robot's kinodynamic constraints, use of smoothing techniques, and whether the implementation is online or offline.