Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Factos & Números
000
Apresentação

Centro de Sistemas de Computação Avançada

A  missão do CRACS é procurar a excelência científica nas áreas de linguagens de programação, computação paralela e distribuída, segurança e privacidade, mineração de informação e sistemas web baseados no desenvolvimento de sistemas de software escaláveis para aplicações desafiadoras e multidisciplinares.

O nosso ambiente de investigação é enriquecido com jovens e talentosos investigadores que, em conjunto com investigadores seniores, constituem a massa crítica necessária e dotam a instituição das competências científicas para cumprir a sua missão.

Últimas Notícias
Informática

Investigadores do INESC TEC premiados por trabalho de investigação que visa a proteção de privacidade em telemóveis

Um grupo de Investigadores do INESC TEC foi distinguido por um trabalho de investigação sobre a gestão de permissões em dispositivos móveis. A equipa desenvolveu um conjunto de técnicas para automatizar a resposta a pedidos de permissões por parte das aplicações de smartphones com uma fiabilidade de 90%. Este trabalho recebeu o prémio de melhor artigo científico na conferência ACM CODASPY que teve lugar nos Estados Unidos da América.

08 julho 2022

Redes de Sistemas Inteligentes

INESC TEC integra projeto que vai tornar veículos autónomos mais seguros

  No âmbito do projeto THEIA - Automated Perception Driving, uma parceria entre a Universidade do Porto e a Bosch, que tem como objetivo tornar os veículos autónomos mais seguros através de uma melhor perceção da envolvente exterior, o INESC TEC irá contribuir para o desenvolvimento de algoritmos de perceção, computação e arquiteturas baseadas em inteligência artificial.

07 junho 2022

Informática

INESC TEC desenvolve ferramenta para identificação de espécies biológicas

Investigadores do INESC TEC desenvolveram a Biolens, uma aplicação web que permite a classificação de espécies biológicas através da submissão de fotografias. Atualmente a plataforma é capaz de reconhecer um subconjunto muito significativo das espécies portuguesas de libelinhas, libélulas, borboletas e mariposas.

03 junho 2022

Informática

Investigador INESC TEC publica livro dedicado à gamificação

Ricardo Queirós, investigador do INESC TEC, e docente na Escola Superior de Media Artes e Design do Instituto Politécnico do Porto (ESMAD-P.Porto), é um dos autores do livro Gamificação Aplicada às Organizações e ao Ensino, juntamente com Mário Pinto, também docente na ESMAD-P.Porto e investigador na uniMAD.

24 março 2022

Informática

INESC TEC participa em dois projetos de apoio ao ensino das ciências da computação

O Centro de Sistemas de Computação Avançada (CRACS) do INESC TEC participa em dois projetos financiados pelo programa da União Europeia Erasmus+, cujo objetivo é desenvolver novas ferramentas que suportem o ensino das ciências da computação, contribuindo para a melhoria da aprendizagem da programação.

24 maio 2021

041

Projetos Selecionados

PRIVATEER

Privacy-first Security Enablers for 6G Networks

2023-2025

THEIA

Automated Perception Driving

2022-2023

AI4DM

AI predictive modeling Services

2021-2022

FGPEPlus

Learning tools interoperability for gamified programming education

2021-2023

JuezLTI

Automatic assessment of computing exercises using LTI standard

2021-2023

PANDORA

Cyber Defence Platform for Real-time Threat Hunting, Incident Response and Information Sharing

2020-2022

Cortaderia

Desenvolvimento de Software para Monitorização da Espécie Invasora Cortaderia selloana

2020-2020

Authenticus19_20

Consultoria Tecnológica em Sistemas CRIS e Cálculo de APC

2019-2020

T4CDTKC

Training 4 Cotec, Digital Transformation Knowledge Challenge - Elaboração de Programa de Formação “CONHECER E COMPREENDER O DESAFIO DAS TECNOLOGIAS DE TRANSFORMAÇÃO DIGITAL”

2019-2021

Angerona

Plataforma de Middleware para privacy em IoT

2018-2019

FGPE

Framework for Gamified Programming Education

2018-2021

AuthenticusNF

Desenvolvimento de Indicadores de Produção Científica Baseados no Authenticus

2018-2018

PGODISSEIA

Serviço de instalação e configuração de uma plataforma de autenticação, implementação de solução de gestão centralizada de certificados digitais, auditoria de segurança (pen-testing) e análise de impacto de privacidade dos tratamentos de dados pessoais das plataformas de integração e autenticação

2018-2020

CRADLE

Aplicação de deep learning ao processo de investigação de novas drogas anticancerígenas

2018-2021

Authenticus2019

Apoio Técnico ao CINTESIS para extração de indicadores de produção científica baseados no Authenticus

2018-2018

ELVEN

Elven - Lógicas para verificação de programas na Web

2016-2019

Digi-NewB

Non-invasive monitoring of perinatal health through multiparametric digital representation of clinically relevant functions for improving clinical intervention in neonatal units (Digi-NewB)

2016-2020

FOUREYES

TEC4Growth - RL FourEyes - Intelligence, Interaction, Immersion and Innovation for media industries

2015-2019

NanoStima-RL5

NanoSTIMA - Advanced Methodologies for Computer-Aided Detection and Diagnosis

2015-2019

NanoStima-RL3

NanoSTIMA - Health data infrastructure

2015-2019

NanoStima-RL4

NanoSTIMA - Health Data Analysis & Decision

2015-2019

SMILES

TEC4Growth - RL SMILES - Smart, Mobile, Intelligent and Large scale Sensing and analytics

2015-2019

FOTOCATGRAF

Fotocatalisadores baseados em grafeno e semicondutores para um sistema de abastecimento de água sustentável e seguro: uma tecnologia avançada para a remoção de poluentes emergentes

2015-2018

REMINDS

REMINDS - Sistema para Mineração e Deteção de Relevância

2015-2017

PANF

Possibilidades de recolha e transmissão de dados a partir do Sifarma

2015-2016

SEA

SEA-Sistema de ensino autoadaptativo

2015-2015

MGI

Contrato de Aquisição de serviços de produção e desenvolvimento de módulo para gestão de iterações para integrar no sistema de informação da UP (SIGARRA)

2015-2015

Hyrax

Crowd-Sourcing de Dispositivos Móveis para o Desenvolvimento de Edge-Clouds

2014-2018

DAT

Tratamento e análise inteligente de dados

2014-2015

ABLe

Aprendizagem baseada em conhecimento para aplicação na área médica

2013-2015

Authenticus

Authenticus - Um Sistema de Identificação e Validação de Publicações Científicas Portuguesas

2013-2016

SIBILA

Blocos Interativos Inteligentes para uma Melhor Aprendizagem

2013-2015

ADE

Deteção de Efeitos Adversos de Drogas

2012-2015

e-Policy

Engenharia para a avaliação do Ciclo de Vida de Decisões Políticas (ePolicy)

2011-2014

Leap

Ambientes lógicos com Paralelismo Avançado

2011-2014

MACAW

Macroprogramação para Redes de Sensores Sem Fios

2011-2014

Breadcrumbs

Rede social com base em bibliotecas pessoais de fragmentos de notícias

2010-2012

Ofelia

Ambientes abertos federados para alavancagem de identidade e autorização

2010-2013

Horus

Representações de Horn para Sistemas com Incerteza

2010-2013

DIGISCOPE

Estetoscópio Digital para Uso Clínico

2010-2013

Palco3.0

Sistema web inteligente de apoio à gestão de uma rede social na área da música

2008-2011

Equipa
Publicações

CRACS Publicações

Ler todas as publicações

2023

Machine learning models based on clinical indices and cardiotocographic features for discriminating asphyxia fetuses-Porto retrospective intrapartum study

Autores
Ribeiro, M; Nunes, I; Castro, L; Costa-Santos, C; Henriques, TS;

Publicação
FRONTIERS IN PUBLIC HEALTH

Abstract
IntroductionPerinatal asphyxia is one of the most frequent causes of neonatal mortality, affecting approximately four million newborns worldwide each year and causing the death of one million individuals. One of the main reasons for these high incidences is the lack of consensual methods of early diagnosis for this pathology. Estimating risk-appropriate health care for mother and baby is essential for increasing the quality of the health care system. Thus, it is necessary to investigate models that improve the prediction of perinatal asphyxia. Access to the cardiotocographic signals (CTGs) in conjunction with various clinical parameters can be crucial for the development of a successful model. ObjectivesThis exploratory work aims to develop predictive models of perinatal asphyxia based on clinical parameters and fetal heart rate (fHR) indices. MethodsSingle gestations data from a retrospective unicentric study from Centro Hospitalar e Universitario do Porto de Sao Joao (CHUSJ) between 2010 and 2018 was probed. The CTGs were acquired and analyzed by Omniview-SisPorto, estimating several fHR features. The clinical variables were obtained from the electronic clinical records stored by ObsCare. Entropy and compression characterized the complexity of the fHR time series. These variables' contribution to the prediction of asphyxia perinatal was probed by binary logistic regression (BLR) and Naive-Bayes (NB) models. ResultsThe data consisted of 517 cases, with 15 pathological cases. The asphyxia prediction models showed promising results, with an area under the receiver operator characteristic curve (AUC) >70%. In NB approaches, the best models combined clinical and SisPorto features. The best model was the univariate BLR with the variable compression ratio scale 2 (CR2) and an AUC of 94.93% [94.55; 95.31%]. ConclusionBoth BLR and Bayesian models have advantages and disadvantages. The model with the best performance predicting perinatal asphyxia was the univariate BLR with the CR2 variable, demonstrating the importance of non-linear indices in perinatal asphyxia detection. Future studies should explore decision support systems to detect sepsis, including clinical and CTGs features (linear and non-linear).

2023

Towards the Concept of Spatial Network Motifs

Autores
Ferreira, J; Barbosa, A; Ribeiro, P;

Publicação
COMPLEX NETWORKS AND THEIR APPLICATIONS XI, COMPLEX NETWORKS 2022, VOL 2

Abstract

2023

GATUGU: Six Perspectives of Evaluation of Gamified Systems

Autores
Swacha, J; Queiros, R; Paiva, JC;

Publicação
INFORMATION

Abstract
As gamification spreads to new areas, new applications are being developed and the interest in evaluating gamified systems continues to grow. To date, however, no one has comprehensively approached this topic: multiple evaluation dimensions and measures have been proposed and applied without any effort to organize them into a full gamut of tools for the multi-dimensional evaluation of gamified systems. This paper addresses this gap by proposing GATUGU, a set of six perspectives of evaluation of gamified systems: General effects of gamification, Area-specific effects of gamification, Technical quality of gamified systems, Use of gamified systems, Gamefulness of gamified systems, and User experience of gamified systems. For each perspective, GATUGU indicates the relevant dimensions of evaluation, and, for each dimension, one measure is suggested. GATUGU does not introduce any new measurement tools but merely recommends one of the available tools for each dimension, considering their popularity and ease of use. GATUGU can guide researchers in selecting gamification system evaluation perspectives and dimensions and in finding adequate measurement tools. Thanks to conforming to GATUGU, the published gamification system evaluation results will become easier to compare and to perform various kinds of meta-analyses on them.

2023

A WebApp for Reliability Detection in Social Media

Autores
David, F; Guimarães, N; Figueira, Á;

Publicação
Procedia Computer Science

Abstract

2023

Bibliometric Analysis of Automated Assessment in Programming Education: A Deeper Insight into Feedback

Autores
Paiva, JC; Figueira, Á; Leal, JP;

Publicação
Electronics

Abstract
Learning to program requires diligent practice and creates room for discovery, trial and error, debugging, and concept mapping. Learners must walk this long road themselves, supported by appropriate and timely feedback. Providing such feedback in programming exercises is not a humanly feasible task. Therefore, the early and steadily growing interest of computer science educators in the automated assessment of programming exercises is not surprising. The automated assessment of programming assignments has been an active area of research for over a century, and interest in it continues to grow as it adapts to new developments in computer science and the resulting changes in educational requirements. It is therefore of paramount importance to understand the work that has been performed, who has performed it, its evolution over time, the relationships between publications, its hot topics, and open problems, among others. This paper presents a bibliometric study of the field, with a particular focus on the issue of automatic feedback generation, using literature data from the Web of Science Core Collection. It includes a descriptive analysis using various bibliometric measures and data visualizations on authors, affiliations, citations, and topics. In addition, we performed a complementary analysis focusing only on the subset of publications on the specific topic of automatic feedback generation. The results are highlighted and discussed.

Factos & Números

7Artigos em conferências indexadas

2020

9Artigos em revistas indexadas

2020

1Contratados de I&D

2020