Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    Álvaro Figueira
  • Cluster

    Informática
  • Cargo

    Responsável de Área
  • Desde

    01 março 2009
002
Publicações

2021

Profiling Accounts Political Bias on Twitter

Autores
Guimaraes, N; Figueira, A; Torgo, L;

Publicação
2021 16th Iberian Conference on Information Systems and Technologies (CISTI)

Abstract

2021

Towards a pragmatic detection of unreliable accounts on social networks

Autores
Guimarães, N; Figueira, A; Torgo, L;

Publicação
Online Social Networks and Media

Abstract

2021

Covid-19 Impact on Higher Education Institution’s Social Media Content Strategy

Autores
Coelho, T; Figueira, A;

Publicação
Lecture Notes in Computer Science

Abstract

2020

Identifying journalistically relevant social media texts using human and automatic methodologies

Autores
Guimaraes, N; Miranda, F; Figueira, A;

Publicação
INTERNATIONAL JOURNAL OF GRID AND UTILITY COMPUTING

Abstract
Social networks have provided the means for constant connectivity and fast information dissemination. In addition, real-time posting allows a new form of citizen journalism, where users can report events from a witness perspective. Therefore, information propagates through the network at a faster pace than traditional media reports it. However, relevant information is a small percentage of all the content shared. Our goal is to develop and evaluate models that can automatically detect journalistic relevance. To do it, we need solid and reliable ground truth data with a significantly large quantity of annotated posts, so that the models can learn to detect relevance over all the spectrum. In this article, we present and confront two different methodologies: an automatic and a human approach. Results on a test data set labelled by experts' show that the models trained with automatic methodology tend to perform better in contrast to the ones trained using human annotated data.

2020

Contribution of Social Tagging to Clustering Effectiveness Using as Interpretant the User’s Community

Autores
Cunha, E; Figueira, A;

Publicação
Trends and Innovations in Information Systems and Technologies - Advances in Intelligent Systems and Computing

Abstract

Teses
supervisionadas

2020

Analyzing and Developing Indicators for Building an Automatic Detector of Unreliable Information in Social Media

Autor
Nuno Ricardo Pinheiro da Silva Guimarães

Instituição
UP-FCUP

2020

Reasoning on Semantic Representations of Source Code to Support Programming Education

Autor
José Carlos Costa Paiva

Instituição
UP-FCUP

2020

Um sistema para a criação de questionários dinâmicos com recurso a grafos

Autor
Artur Ricardo Dias Peniche

Instituição
UP-FCUP

2020

Automatic Analysis of Social Media Publication Strategy for Higher Education Institutions

Autor
Tiago Coelho

Instituição
UP-FCUP

2020

Automatic identification of institutions in affiliation strings

Autor
José Pedro Ribeiro Azenha Rocha

Instituição
UP-FCUP