Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About
Download Photo HD

About

I'm a member of the Centre for Power and Energy Systems of INESC TEC since 2011,  currently holding a Senior Researcher position. I received my MSc and PhD degrees in Electrical Engineering from the Faculty of Engineering, University of Porto (FEUP) in 2008 and 2015 respectively. My research interests are focused on the operation of distribution networks within smart grid context, considering the large scale integration of Distributed Energy Resources and microgrid concepts. I have been involved in several national and European projects, such as MERGE, SENSIBLE and UPGRID project, namely in the development and demonstration activities in INESC TEC Smart Grids and Electric Vehicles laboratory of control and management strategies to enable the safe integration of Distributed Energy Resources in distribution networks, particularly when operating islanded from the main grid.

Interest
Topics
Details

Details

  • Name

    Clara Sofia Gouveia
  • Cluster

    Power and Energy
  • Role

    Area Manager
  • Since

    01st July 2011
031
Publications

2022

A Multiobjective Approach for the Optimal Placement of Protection and Control Devices in Distribution Networks With Microgrids

Authors
REIZ, C; DE LIMA, TD; LEITE, JB; JAVADI, MS; GOUVEIA, CS;

Publication
IEEE ACCESS

Abstract

2022

Data-driven Anomaly Detection and Event Log Profiling of scada Alarms

Authors
Andrade, JR; Rocha, C; Silva, R; Viana, JP; Bessa, RJ; Gouveia, C; Almeida, B; Santos, RJ; Louro, M; Santos, PM; Ribeiro, AF;

Publication
IEEE ACCESS

Abstract

2022

Quantifying the Difference Between Resilience and Reliability in the Operation Planning of Mobile Resources for Power Distribution Grids

Authors
Lotfi, M; Panteli, M; Venkatasubramanian, BV; Javadi, MS; Carvalho, LM; Gouveia, CS;

Publication
Findings

Abstract
Modern power grids have high levels of distributed energy resources, automation, and inherent flexibility. Those characteristics have been proven to be favorable from an environmental, social and economic perspective. Despite the increased versatility, modern grids are becoming more vulnerable to high-impact low-probability (HILP) threats, particularly for the distribution networks. On one hand, this is due to the increasing frequency and severity of weather events and natural disasters. On the other hand, it is aggravated by the increased complexity of smart grids. Resilience is broadly defined as the capability of a system to mitigate the effects of and recover from HILP events, which is often confused with reliability that is concerned with low-impact high-probability (LIHP) ones. In this paper, a distribution system in Portugal is simulated to showcase how the utilization of flexibility and mobile energy resources (MERs) should be considered differently relative to HILP vs LIHP threats.

2021

Characterization of TSO and DSO Grid System Services and TSO-DSO Basic Coordination Mechanisms in the Current Decarbonization Context

Authors
Silva, R; Alves, E; Ferreira, R; Villar, J; Gouveia, C;

Publication
ENERGIES

Abstract
Power systems rely on ancillary services (ASs) to ensure system security and stability. Until recently, only the conventional power generation resources connected to the transmission grids were allowed to provide these ASs managed by the transmission system operators (TSOs), while distribution system operators (DSOs) had a more passive role, focused on guaranteeing distribution capacity to bring power to final consumers with enough quality. Now, with the decarbonization, digitalization and decentralization processes of the electrical networks, the growing integration of distributed energy resources (DERs) in distribution grids are displacing conventional generation and increasing the complexity of distribution networks' operation, requiring the implementation of new active and coordinated management strategies between TSOs and DSOs. In this context, DERs are becoming potential new sources of flexibility for both TSOs and DSOs in helping to manage the power system. This paper proposes a systematic characterization of both traditional and potentially new ASs for TSOs, and newly expected DSO local system services to support the new distribution grid operation paradigm, reviewing, in addition, the main TSO-DSO coordination mechanisms.

2021

Enabling Interoperable Flexibility and Standardized Grid Support Services

Authors
Falcão, J; Cândido, C; Silva, D; Sousa, J; Pereira, M; Rua, D; Gouveia, C; Coelho, F; Bessa, R; Lucas, A;

Publication
CIRED 2021 - The 26th International Conference and Exhibition on Electricity Distribution

Abstract

Supervised
thesis

2020

Mapeamento automático da topologia de redes inteligentes de baixa tensão

Author
João Afonso da Silva Picão

Institution
UP-FEUP