Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

I'm a member of the Centre for Power and Energy Systems of INESC TEC since 2011,  currently holding a Senior Researcher position. I received my MSc and PhD degrees in Electrical Engineering from the Faculty of Engineering, University of Porto (FEUP) in 2008 and 2015 respectively. My research interests are focused on the operation of distribution networks within smart grid context, considering the large scale integration of Distributed Energy Resources and microgrid concepts. I have been involved in several national and European projects, such as MERGE, SENSIBLE and UPGRID project, namely in the development and demonstration activities in INESC TEC Smart Grids and Electric Vehicles laboratory of control and management strategies to enable the safe integration of Distributed Energy Resources in distribution networks, particularly when operating islanded from the main grid.

Interest
Topics
Details

Details

  • Name

    Clara Sofia Gouveia
  • Cluster

    Power and Energy
  • Role

    Area Manager
  • Since

    01st July 2011
034
Publications

2022

A Multiobjective Approach for the Optimal Placement of Protection and Control Devices in Distribution Networks With Microgrids

Authors
REIZ, C; DE LIMA, TD; LEITE, JB; JAVADI, MS; GOUVEIA, CS;

Publication
IEEE ACCESS

Abstract

2022

Data-driven Anomaly Detection and Event Log Profiling of scada Alarms

Authors
Andrade, JR; Rocha, C; Silva, R; Viana, JP; Bessa, RJ; Gouveia, C; Almeida, B; Santos, RJ; Louro, M; Santos, PM; Ribeiro, AF;

Publication
IEEE ACCESS

Abstract

2022

Quantifying the Difference Between Resilience and Reliability in the Operation Planning of Mobile Resources for Power Distribution Grids

Authors
Lotfi, M; Panteli, M; Venkatasubramanian, BV; Javadi, MS; Carvalho, LM; Gouveia, CS;

Publication
Findings

Abstract
Modern power grids have high levels of distributed energy resources, automation, and inherent flexibility. Those characteristics have been proven to be favorable from an environmental, social and economic perspective. Despite the increased versatility, modern grids are becoming more vulnerable to high-impact low-probability (HILP) threats, particularly for the distribution networks. On one hand, this is due to the increasing frequency and severity of weather events and natural disasters. On the other hand, it is aggravated by the increased complexity of smart grids. Resilience is broadly defined as the capability of a system to mitigate the effects of and recover from HILP events, which is often confused with reliability that is concerned with low-impact high-probability (LIHP) ones. In this paper, a distribution system in Portugal is simulated to showcase how the utilization of flexibility and mobile energy resources (MERs) should be considered differently relative to HILP vs LIHP threats.

2022

A Multi-Temporal Optimal Power Flow Model for Normal and Contingent Operation of Microgrids

Authors
Javadi, MS; Gouveia, CS; Carvalho, LM;

Publication
2022 IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING AND 2022 IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC / I&CPS EUROPE)

Abstract
In this paper, a multi-temporal optimal power flow (OPF) model for radial networks is proposed. The mathematical problem formulation is presented as a mixed-integer quadratically constrained programming (MIQCP) problem. The main core of the developed OPF problem is benefiting from the second-order conic programming (SOCP) approach while the quadratic constraints of the power flow equations have been efficiently handled. In the developed model, the dynamic behaviour of the electrical energy storage (EES) has been addressed for the day-ahead operation problem. In addition, the developed model is tested and verified for both normal and contingent events and the obtained results are satisfactory in terms of feasibility and optimality. In the islanded operation, a grid-forming unit is the main responsible for maintaining the voltage reference while other units behave as slave. The model is tested on the modified IEEE 33-bus network to verify the performance of the developed tool. © 2022 IEEE.

2022

Optimal Allocation of Protection and Control Devices in Distribution Networks with Microgrids

Authors
Reiz, C; de Lima, TD; Leite, JB; Javadi, MS; Gouveia, CS;

Publication
2022 IEEE 21ST MEDITERRANEAN ELECTROTECHNICAL CONFERENCE (IEEE MELECON 2022)

Abstract
Protection and control systems represent an essential part of distribution networks, ensuring the physical integrity of components and improving system reliability. Protection devices isolate a portion of the network affected by a fault, while control devices reduce the number of de-energized loads by transferring loads to neighboring feeders. The integration of distributed generation has the potential to improve the continuity of energy services through islanding operation during outage conditions. In this context, this paper presents a multi-objective optimization approach for the size and allocation of protection and control devices in distribution networks with microgrids supplied by renewable energy sources. Reclosers, fuses, remote-controlled switches, and directional relays are considered in the formulation. The demand and generation uncertainties define the islanding operation and the load transfer possibilities. A genetic algorithm is presented to solve the allocation problem. The compromise programming is performed to choose the best solution from the Pareto front. Results show interesting setups for the protection system and viability of islanding operation.

Supervised
thesis

2020

Mapeamento automático da topologia de redes inteligentes de baixa tensão

Author
João Afonso da Silva Picão

Institution
UP-FEUP