2025
Authors
Alvarez, ML; Bahillo, A; Arjona, L; Nogueira, DM; Gomes, EF; Jorge, AM;
Publication
IEEE ACCESS
Abstract
Sound-based uroflowmetry (SU) is a non-invasive technique emerging as an alternative to traditional uroflowmetry (UF) to calculate the voiding flow rate based on the sound generated by the urine impacting the water in a toilet, enabling remote monitoring and reducing the patient burden and clinical costs. This study trains four different machine learning (ML) models (random forest, gradient boosting, support vector machine and convolutional neural network) using both regression and classification approaches to predict and categorize the voiding flow rate from sound events. The models were trained with a dataset that contains sounds from synthetic void events generated with a high precision peristaltic pump and a traditional toilet. Sound was simultaneously recorded with three devices: Ultramic384k, Mi A1 smartphone and Oppo Smartwatch. To extract the audio features, our analysis showed that segmenting the audio signals into 1000 ms segments with frequencies up to 16 kHz provided the best results. Results show that random forest achieved the best performance in both regression and classification tasks, with a mean absolute error (MAE) of 0.9, 0.7 and 0.9 ml/s and quadratic weighted kappa (QWK) of 0.99, 1.0 and 1.0 for the three devices. To evaluate the models in a real environment and assess the effectiveness of training with synthetic data, the best-performing models were retrained and validated using a real voiding sounds dataset. The results reported an MAE below 2.5 ml/s and a QWK above 0.86 for regression and classification tasks, respectively.
2025
Authors
Kasapakis, V; Morgado, L;
Publication
CoRR
Abstract
2025
Authors
Tosin, R; Rodrigues, L; Santos-Campos, M; Gonçalves, I; Barbosa, C; Santos, F; Martins, R; Cunha, M;
Publication
SMART AGRICULTURAL TECHNOLOGY
Abstract
This study demonstrates the application of a tomography-like (TL) method to monitor grape maturation dynamics over two growing seasons (2021-2022) in the Douro Wine Region. Using a Vis-NIR point-of-measurement sensor, which employs visible and near-infrared light to penetrate grape tissues non-destructively and provide spectral data to predict internal composition, this approach captures non-destructive measurements of key physicochemical properties, including soluble solids content (SSC), weight-to-volume ratio, chlorophyll and anthocyanin levels across internal grape tissues-skin, pulp, and seeds-over six post-veraison stages. The collected data were used to generate detailed metabolic maps of maturation, integrating topographical factors such as altitude and NDVI-based (normalised difference vegetation index) vigour assessments, which revealed significant (p < 0.05) variations in SSC, chlorophyll, and anthocyanin levels across vineyard zones. The metabolic maps generated from the TL method enable high-throughput data to reveal the impact of environmental variability on grape maturation across distinct vineyard areas. Predictive models using random forest (RF) and self-learning artificial intelligence (SL-AI) algorithms showed RF's robustness, achieving stable predictions with R-2 >= 0.86 and MAPE <= 33.83 %. To illustrate the TL method's practical value, three hypothetical decision models were developed for targeted winemaking objectives based on SSC, chlorophyll in the pulp, and anthocyanin in the skin and seeds. These models underscore the TL method's ability to support site-specific management (SSM) by providing actionable agricultural practices (e.g. harvest) into vineyard management, guiding winemakers to implement tailored interventions based on metabolic profiles rather than only cultivar characteristics. This precision viticulture (PV) approach enhances wine quality and production efficiency by aligning vineyard practices with specific wine quality goals.
2025
Authors
Teixeira, J; Klöckner, P; Montezuma, D; Cesur, ME; Fraga, J; Horlings, HM; Cardoso, JS; de Oliveira, SP;
Publication
Deep Generative Models - 5th MICCAI Workshop, DGM4MICCAI 2025, Held in Conjunction with MICCAI 2025, Daejeon, South Korea, September 23, 2025, Proceedings
Abstract
In addition to evaluating tumor morphology using H&E staining, immunohistochemistry is used to assess the presence of specific proteins within the tissue. However, this is a costly and labor-intensive technique, for which virtual staining, as an image-to-image translation task, offers a promising alternative. Although recent, this is an emerging field of research with 64% of published studies just in 2024. Most studies use publicly available datasets of H&E-IHC pairs from consecutive tissue sections. Recognizing the training challenges, many authors develop complex virtual staining models based on conditional Generative Adversarial Networks but ignore the impact of adversarial loss on the quality of virtual staining. Furthermore, overlooking the issues of model evaluation, they claim improved performance based on metrics such as SSIM and PSNR, which are not sufficiently robust to evaluate the quality of virtually stained images. In this paper, we developed CSSP2P GAN, which we demonstrate to achieve heightened pathological fidelity through a blind pathological expert evaluation. Furthermore, while iteratively developing our model, we study the impact of the adversarial loss and demonstrate its crucial role in the quality of virtually stained images. Finally, while comparing our model with reference works in the field, we underscore the limitations of the currently used evaluation metrics and demonstrate the superior performance of CSSP2P GAN. © 2025 Elsevier B.V., All rights reserved.
2025
Authors
Amorim-Lopes, M; Cruz-Gomes, S; Doldi, E; Almada-Lobo, B;
Publication
HEALTH POLICY
Abstract
The specialization of Health Human Resources (HHR) is increasingly recognized as essential for addressing evolving healthcare demands. This paper presents a comprehensive policy framework for assisting with the implementation of Clinical Nurse Specialist (CNS) roles at the national or regional level, integrating key dimensions including barriers and enablers, regulation and governance, education and training requirements, career development, workforce planning, and economic analysis. The framework was applied to the implementation of CNS roles in Portugal, resulting in the issuance of a decree-law by the government. Our findings demonstrate that the economic analysis step was critical in addressing concerns from government authorities and health system funders regarding the potential budgetary impact of CNS implementation. By providing evidence-based projections of costs and benefits, the economic analysis facilitated smoother negotiations and consensus-building among stakeholders, including nursing unions. Furthermore, the integration of workforce planning ensured the alignment of educational capacity with workforce needs, thus avoiding potential implementation bottlenecks. The application of the framework also revealed important feedback relationships between its dimensions, highlighting the interdependent nature of the implementation process. This dynamic approach, which adapts to real-time feedback and stakeholder input, underscores the necessity of a holistic and iterative strategy for successful CNS role integration. The insights gained from the Portuguese case underscore the utility of this policy framework in guiding the implementation of advanced nursing roles in diverse healthcare contexts.
2025
Authors
Accinelli, E; Afsar, A; Martins, F; Martins, J; Oliveira, BMPM; Oviedo, J; Pinto, AA; Quintas, L;
Publication
MATHEMATICAL METHODS IN THE APPLIED SCIENCES
Abstract
This paper fits in the theory of international agreements by studying the success of stable coalitions of agents seeking the preservation of a public good. Extending Baliga and Maskin, we consider a model of N homogeneous agents with quasi-linear utilities of the form u(j) (r(j); r) = r(alpha) - r(j), where r is the aggregate contribution and the exponent alpha is the elasticity of the gross utility. When the value of the elasticity alpha increases in its natural range (0, 1), we prove the following five main results in the formation of stable coalitions: (i) the gap of cooperation, characterized as the ratio of the welfare of the grand coalition to the welfare of the competitive singleton coalition grows to infinity, which we interpret as a measure of the urge or need to save the public good; (ii) the size of stable coalitions increases from 1 up to N; (iii) the ratio of the welfare of stable coalitions to the welfare of the competitive singleton coalition grows to infinity; (iv) the ratio of the welfare of stable coalitions to the welfare of the grand coalition decreases (a lot), up to when the number of members of the stable coalition is approximately N/e and after that it increases (a lot); and (v) the growth of stable coalitions occurs with a much greater loss of the coalition members when compared with free-riders. Result (v) has two major drawbacks: (a) A priori, it is difficult to convince agents to be members of the stable coalition and (b) together with results (i) and (iv), it explains and leads to the pessimistic Barrett's paradox of cooperation, even in a case not much considered in the literature: The ratio of the welfare of the stable coalitions against the welfare of the grand coalition is small, even in the extreme case where there are few (or a single) free-riders and the gap of cooperation is large. Optimistically, result (iii) shows that stable coalitions do much better than the competitive singleton coalition. Furthermore, result (ii) proves that the paradox of cooperation is resolved for larger values of.. so that the grand coalition is stabilized.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.