2024
Authors
Alves, H; Brito, P; Campos, P;
Publication
DATA MINING AND KNOWLEDGE DISCOVERY
Abstract
In this paper we introduce and develop the concept of interval-weighted networks (IWN), a novel approach in Social Network Analysis, where the edge weights are represented by closed intervals composed with precise information, comprehending intrinsic variability. We extend IWN for both Newman's modularity and modularity gain and the Louvain algorithm, considering a tabular representation of networks by contingency tables. We apply our methodology to two real-world IWN. The first is a commuter network in mainland Portugal, between the twenty three NUTS 3 Regions (IWCN). The second focuses on annual merchandise trade between 28 European countries, from 2003 to 2015 (IWTN). The optimal partition of geographic locations (regions or countries) is developed and compared using two new different approaches, designated as Classic Louvain and Hybrid Louvain , which allow taking into account the variability observed in the original network, thereby minimizing the loss of information present in the raw data. Our findings suggest the division of the twenty three Portuguese regions in three main communities for the IWCN and between two to three country communities for the IWTN. However, we find different geographical partitions according to the community detection methodology used. This analysis can be useful in many real-world applications, since it takes into account that the weights may vary within the ranges, rather than being constant.
2024
Authors
Brito, T; Pereira, AI; Costa, P; Lima, J;
Publication
OPTIMIZATION, LEARNING ALGORITHMS AND APPLICATIONS, PT II, OL2A 2023
Abstract
Worldwide, forests have been harassed by fire in recent years. Either by human intervention or other reasons, the history of the burned area is increasing considerably, harming fauna and flora. It is essential to detect an early ignition for fire-fighting authorities can act quickly, decreasing the impact of forest damage impacts. The proposed system aims to improve nature monitoring and improve the existing surveillance systems through satellite image recognition. The soil recognition via satellite images can determine the sensor modules' best position and provide crucial input information for artificial intelligence-based systems. For this, satellite images from the Sentinel-2 program are used to generate forest density maps as updated as possible. Four classification algorithms make the Tree Cover Density (TCD) map, consisting of the Gaussian Mixture Model (GMM), Random Forest (RF), Support Vector Machine (SVM), and K-Nearest Neighbors (K-NN), which identify zones by training known regions. The results demonstrate a comparison between the algorithms through their performance in recognizing the forest, grass, pavement, and water areas by Sentinel-2 images.
2024
Authors
Fontes, M; Leite, D; Dallyson, J; Cunha, A;
Publication
Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST
Abstract
Artificial intelligence (AI) is playing a growing role today in several areas, especially in health, where understanding AI models and their predictions is extremely important for health professionals. In this context, Explainable AI (XAI) plays a crucial role in seeking to provide understandable explanations for these models. This article analyzes two different XAI approaches applied to analyzing gastric endoscopy images. The first, more conventional approach uses Grad CAM, while the second, even less explored but with great potential, is based on “similarity-based explanations”. This example-based XAI technique aims to provide representative examples to support the decisions of AI models. In this study, we compare these two techniques applied to two different models: one based on the VGG16 architecture and the other based on ResNet50, designed to classify images from the KVASIR-capsule database. The results reveal that Grad-CAM provided intuitive explanations only for the VGG16 model, while the “similarity-based explanations” technique provided consistent explanations for both models. We conclude that exploring other XAI techniques can be a significant asset in improving the understanding of the various AI models. © ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2024.
2024
Authors
Constantino, J; Mamede, HS; Da Silva, MM;
Publication
Emerging Science Journal
Abstract
2024
Authors
Fernandes, DS; Bispo, J; Bento, LC; Figueiredo, M;
Publication
PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, CIARP 2023, PT II
Abstract
Over the years, many solutions have been suggested in order to improve object detection in maritime environments. However, none of these approaches uses flight information, such as altitude, camera angle, time of the day, and atmospheric conditions, to improve detection accuracy and network robustness, even though this information is often available and captured by the UAV. This work aims to develop a network unaffected by image-capturing conditions, such as altitude and angle. To achieve this, metadata was integrated into the neural network, and an adversarial learning training approach was employed. This was built on top of the YOLOv7, which is a state-of-the-art realtime object detector. To evaluate the effectiveness of this methodology, comprehensive experiments and analyses were conducted. Findings reveal that the improvements achieved by this approach are minimal when trying to create networks that generalize more across these specific domains. The YOLOv7 mosaic augmentation was identified as one potential responsible for this minimal impact because it also enhances the model's ability to become invariant to these image-capturing conditions. Another potential cause is the fact that the domains considered (altitude and angle) are not orthogonal with respect to their impact on captured images. Further experiments should be conducted using datasets that offer more diverse metadata, such as adverse weather and sea conditions, which may be more representative of real maritime surveillance conditions. The source code of this work is publicly available at https://git hub.com/ipleiria-robotics/maritime-metadata-adaptation.
2024
Authors
Valente, D; Brito, T; Correia, M; Carvalho, JA; Lima, J;
Publication
Communications in Computer and Information Science - Optimization, Learning Algorithms and Applications
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.