2025
Authors
Almeida, F; Morais, J;
Publication
E-LEARNING AND DIGITAL MEDIA
Abstract
Non-formal education seeks to address the limitations of formal education that do not reach all communities and do not provide all new competencies and capabilities that are essential for the integrated development of communities. The role of non-formal education becomes even more relevant in the context of developing countries where significant asymmetries in access to education emerge. This study adopts the Solutions Story Tracker provided by the Solutions Journalism Network to identify and explore solutions based on journalism stories in the non-formal education field. A total of 256 stories are identified and categorized into 14 dimensions. The findings reveal that practical, participatory, and volunteering dimensions are the three most common dimensions in these non-formal education initiatives. Furthermore, two emerging dimensions related to empowerment and sustainability are identified, allowing us to extend the theoretical knowledge in the non-formal education field. These conclusions are relevant for establishing public policies that can involve greater participation by local communities in non-formal education and for addressing sustainability challenges through bottom-up initiatives.
2025
Authors
Tuchin, VV; Dai, TH; Oliveira, LM;
Publication
ADVANCED DRUG DELIVERY REVIEWS
Abstract
[No abstract available]
2025
Authors
Pinto, G; Zolfagharnasab, MH; Teixeira, LF; Cruz, H; Cardoso, MJ; Cardoso, JS;
Publication
Artificial Intelligence and Imaging for Diagnostic and Treatment Challenges in Breast Care - Second Deep Breast Workshop, Deep-Breath 2025, Held in Conjunction with MICCAI 2025, Daejeon, South Korea, September 23, 2025, Proceedings
Abstract
3D models are crucial in predicting aesthetic outcomes in breast reconstruction, supporting personalized surgical planning, and improving patient communication. In response to this necessity, this is the first application of Radiance Fields to 3D breast reconstruction. Building on this, the work compares six SoTA 3D reconstruction models. It introduces a novel variant tailored to medical contexts: Depth-Splatfacto, designed to improve denoising and geometric consistency through pseudo-depth supervision. Additionally, we extended model training to grayscale, which enhances robustness under grayscale-only input constraints. Experiments on a breast cancer patient dataset demonstrate that Splatfacto consistently outperforms others, delivering the highest reconstruction quality (PSNR 27.11, SSIM 0.942) and the fastest training times (×1.3 faster at 200k iterations). At the same time, the depth-enhanced variant offers an efficient and stable alternative with minimal fidelity loss. The grayscale train improves speed by ×1.6 with a PSNR drop of 0.70. Depth-Splatfacto further improves robustness, reducing PSNR variance by 10% and making images less blurry across test cases. These results establish a foundation for future clinical applications, supporting personalized surgical planning and improved patient-doctor communication. © 2025 Elsevier B.V., All rights reserved.
2025
Authors
Rasul, A; Teixeira, R; Baptista, J;
Publication
Energies
Abstract
To achieve lower switching losses and higher frequency capabilities in converter design, researchers worldwide have been investigating Silicon carbide (SiC) modules and MOSFETs. In power electronics, wide bandgap devices such as Silicon carbide are essential for creating more efficient, higher-density, and higher-power-rated converters. Devices like SiC and Gallium nitride (GaN) offer numerous advantages in power electronics, particularly by influencing parasitic capacitance and inductance in printed circuit boards (PCBs). A review paper on Silicon carbide converter designs using coupled inductors provides a comprehensive analysis of the advancements in SiC-based power converter technologies. Over the past decade, SiC converter designs have demonstrated both efficiency and reliability, underscoring significant improvements in performance and design methodologies over time. This review paper examines developments in Silicon carbide converter design from 2014 to 2024, with a focus on the research conducted in the past ten years. It highlights the advantages of SiC technology, techniques for constructing converters, and the impact on other components. Additionally, a bibliometric analysis of prior studies has been conducted, with a particular focus on strategies to minimize switching losses, as discussed in the reviewed articles. © 2025 by the authors.
2025
Authors
Magalhaes, M; Melo, M; Coelho, A; Bessa, M;
Publication
COMPUTERS & GRAPHICS-UK
Abstract
This paper aims to evaluate how different combinations of multisensory stimuli affect the vividness of users' mental imagery in the context of virtual tourism. To this end, a between-subjects experimental study was conducted with 94 participants, who were allocated to either a positive or a negative immersive virtual environment. The positive environment contained only pleasant multisensory stimuli, whereas the negative contained only unpleasant stimuli. For each of the virtual experiences, a multisensory treasure hunt was developed, where each object found corresponded to a planned combination of stimuli (positive or negative, accordingly). The results showed that positive stimuli involving a higher number of sensory modalities resulted in higher reported vividness. In contrast, when the same multisensory modalities were delivered with negative stimuli, vividness levels decreased - an effect we attribute to potential cognitive overload. Nevertheless, some reduced negative combinations (audiovisual with smell and audiovisual with haptics) remained effective, indicating that olfactory and haptic cues play an important role in shaping users' vividness of mental imagery, even in negative contexts.
2025
Authors
Shaji, N; Tabassum, S; Ribeiro, RP; Gama, J; Santana, P; Garcia, A;
Publication
COMPLEX NETWORKS & THEIR APPLICATIONS XIII, COMPLEX NETWORKS 2024, VOL 1
Abstract
Waste transport management is a critical sector where maintaining accurate records and preventing fraudulent or illegal activities is essential for regulatory compliance, environmental protection, and public safety. However, monitoring and analyzing large-scale waste transport records to identify suspicious patterns or anomalies is a complex task. These records often involve multiple entities and exhibit variability in waste flows between them. Traditional anomaly detection methods relying solely on individual transaction data, may struggle to capture the deeper, network-level anomalies that emerge from the interactions between entities. To address this complexity, we propose a hybrid approach that integrates network-based measures with machine learning techniques for anomaly detection in waste transport data. Our method leverages advanced graph analysis techniques, such as sub-graph detection, community structure analysis, and centrality measures, to extract meaningful features that describe the network's topology. We also introduce novel metrics for edge weight disparities. Further, advanced machine learning techniques, including clustering, neural network, density-based, and ensemble methods are applied to these structural features to enhance and refine the identification of anomalous behaviors.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.