Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

2025

Maximum-expectation matching under recourse

Autores
Pedroso, JP; Ikeda, S;

Publicação
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH

Abstract
This paper addresses the problem of maximizing the expected size of a matching in the case of unreliable vertices and/or edges. The assumption is that the solution is built in several steps. Ina given step, edges with successfully matched vertices are made permanent; but upon edge or vertex failures, the remaining vertices become eligible for reassignment. This process maybe repeated a given number of times, and the objective is to end with the overall maximum number of matched vertices. An application of this problem is found in kidney exchange programs, going on in several countries, where a vertex is an incompatible patient-donor pair and an edge indicates cross-compatibility between two pairs; the objective is to match these pairs so as to maximize the number of served patients. A new scheme is proposed for matching rearrangement in case of failure, along with a prototype algorithm for computing the optimal expectation for the number of matched edges (or vertices), considering a possibly limited number of rearrangements. Computational experiments reveal the relevance and limitations of the algorithm, in general terms and for the kidney exchange application.

2025

From waste to resource: LIBS methodology development for rapid quality assessment of recycled wood

Autores
Capela, D; Pessanha, S; Lopes, T; Cavaco, R; Teixeira, J; Ferreira, MFS; Magalhaes, P; Jorge, PAS; Silva, NA; Guimaraes, D;

Publicação
JOURNAL OF HAZARDOUS MATERIALS

Abstract
Management and reuse of wood waste can be a challenging process due to the frequent presence of hazardous contaminants. Conventional detection methods are often limited by the need for excessive sample preparation and lengthy and expensive analysis. Laser-induced Breakdown Spectroscopy (LIBS) is a rapid and micro- destructive technique that can be a promising alternative, providing in-situ and real-time analysis, with minimal to no sample preparation required. In this study, LIBS imaging was used to analyze wood waste samples to determine the presence of contaminants such as As, Ba, Cd, Cr, Cu, Hg, Pb, Sb, and Ti. For this analysis, a methodology based on detecting three lines per element was developed, offering a screening method that can be easily adapted to perform qualitative analysis in industrial contexts with high throughput operations. For the LIBS experimental lines selection, control and reference samples, and a pilot set of 10 wood wastes were analysed. Results were validated by two different X-ray Fluorescence (XRF) systems, an imaging XRF and a handheld XRF, that provided spatial elemental information and spectral information, respectively. The results obtained highlighted LIBS ability to detect highly contaminated samples and the importance of using a 3-line criteria to mitigate spectral interferences and discard outliers. To increase the dataset, a LIBS large-scale study was performed using 100 samples. These results were only corroborated by the XRF-handheld system, as it provides a faster alternative. In particular cases, ICP-MS analysis was also performed. The success rates achieved, mostly above 88 %, confirm the capability of LIBS to perform this analysis, contributing to more sustainable waste management practices and facilitating the quick identifi- cation and remediation of contaminated materials.

2025

Efficient-Proto-Caps: A Parameter-Efficient and Interpretable Capsule Network for Lung Nodule Characterization

Autores
Rodrigues, EM; Gouveia, M; Oliveira, HP; Pereira, T;

Publicação
IEEE Access

Abstract
Deep learning techniques have demonstrated significant potential in computer-assisted diagnosis based on medical imaging. However, their integration into clinical workflows remains limited, largely due to concerns about interpretability. To address this challenge, we propose Efficient-Proto-Caps, a lightweight and inherently interpretable model that combines capsule networks with prototype learning for lung nodule characterization. Additionally, an innovative Davies-Bouldin Index with multiple centroids per cluster is employed as a loss function to promote clustering of lung nodule visual attribute representations. When evaluated on the LIDC-IDRI dataset, the most widely recognized benchmark for lung cancer prediction, our model achieved an overall accuracy of 89.7 % in predicting lung nodule malignancy and associated visual attributes. This performance is statistically comparable to that of the baseline model, while utilizing a backbone with only approximately 2 % of the parameters of the baseline model’s backbone. State-of-the-art models achieved better performance in lung nodule malignancy prediction; however, our approach relies on multiclass malignancy predictions and provides a decision rationale aligned with globally accepted clinical guidelines. These results underscore the potential of our approach, as the integration of lightweight and less complex designs into accurate and inherently interpretable models represents a significant advancement toward more transparent and clinically viable computer-assisted diagnostic systems. Furthermore, these findings highlight the model’s potential for broader applicability, extending beyond medicine to other domains where final classifications are grounded in concept-based or example-based attributes. © 2013 IEEE.

2025

Static stability versus packing efficiency in online three-dimensional packing problems: A new approach and a computational study

Autores
Ali, S; Ramos, AG; Oliveira, JF;

Publicação
COMPUTERS & OPERATIONS RESEARCH

Abstract
In online three-dimensional packing problems where items are received one by one and require immediate packing decisions without prior knowledge of upcoming items, considering the static stability constraint is crucial for safely packing each arriving item in real time. Unstable loading patterns can result in risks of potential damage to items, containers, and operators during loading/unloading operations. Nevertheless, static stability constraints have often been neglected or oversimplified in existing online heuristic methods in the literature, undermining the practical implementation of these methods in real-world scenarios. In this study, we analyze how different static stability constraints affect solutions' efficiency and cargo stability, aiming to provide valuable insights and develop heuristic algorithms for real-world online problems, thus increasing the applicability of this research field. To this end, we embedded four distinct static stability constraints in online heuristics, including full-base support, partial-base support, center-of-gravity polygon support, and novel partial-base polygon support. Evaluating the impact of these constraints on the efficiency of a wide range of heuristic methods on real instances showed that regarding the number of used bins, heuristics with polygon- based stabilities have superior performance against those under full-base and partial-base support stabilities. The static mechanical equilibriumapproach offers a necessary and sufficient condition for the cargo static stability, and we employed it as a benchmark in our study to assess the quality of the four studied stability constraints. Knowing the number of stable items under each of these constraints provides valuable managerial insight for decision-making in real-world online packing scenarios.

2025

Next Higher Point: Two Novel Approaches for Computing Natural Visibility Graphs

Autores
Daniel, P; Silva, VF; Ribeiro, P;

Publicação
COMPLEX NETWORKS & THEIR APPLICATIONS XIII, COMPLEX NETWORKS 2024, VOL 1

Abstract
With the huge amount of data that has been collected over time, many methods are being developed to allow better understanding and forecasting in several domains. Time series analysis is a powerful tool to achieve this goal. Despite being a well-established area, there are some gaps, and new methods are emerging to overcome these limitations, such as visibility graphs. Visibility graphs allow the analyses of times series as complex networks and make possible the use of more advanced techniques from another well-established area, network science. In this paper, we present two new efficient approaches for computing natural visibility graphs from times series, one for online scenarios in.O(n log n) and the other for offline scenarios in.O(nm), the latter taking advantage of the number of different values in the time series (m).

2025

A Review of Voicing Decision in Whispered Speech: From Rules to Machine Learning

Autores
da Silva, JMPP; Duarte Nunes, G; Ferreira, A;

Publicação

Abstract

  • 51
  • 4212