2026
Autores
Pereira, MTR; e Oliveira, EDM; Amaral, AM; Pereira, G;
Publicação
IFIP Advances in Information and Communication Technology
Abstract
This project was developed to improve the cost estimation process of new products within the Product Development Department of a furniture manufacturer. This work involved developing a methodology using Machine Learning (ML) models trained on products’ existing data to predict the cost of new innovative ones based on similarities and given data. The ML models used were Linear Regression (LR), Light Gradient-Boosting Machine (LGBM), Random Forest (RF), and Support Vector Machine (SVM). The proposed methodology considers the estimation of the total cost of producing a product, which encompasses both material and operational costs. Throughout this project, several analyses were developed to identify and evaluate different independent variables that could explain the behaviour of these two cost components. The suitability of the different variables was studied by applying several ML models, and a set of functions that return an estimate of the cost as a function of these predictor variables was obtained. The proposed approach, which incorporates ML models into more complex variables to predict, resulted in a 19.29% reduction in estimation error. © 2025 Elsevier B.V., All rights reserved.
2026
Autores
Santos, MJ; Jorge, D; Bonomi, V; Ramos, T; Póvoa, A;
Publicação
INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH
Abstract
Today, logistics activities are driven by the pressing need to simultaneously increase efficiency, reduce costs, and promote sustainability. In our research, we tackle this challenge by adapting a general vehicle routing problem with deliveries and pickups to accommodate different types of customers. Customers requiring both delivery and pickup services are mandatory, while those needing only a pickup service (backhaul customers) are optional and are only visited if profitable. A mixed-integer linear programming model is formulated to minimize fuel consumption. This model can address various scenarios, such as allowing mandatory customers to be served with combined or separate delivery or pickup visits, and visiting optional customers either during or only after mandatory customer visits. An adaptive large neighborhood search is developed to solve instances adapted from the literature as well as to solve a real-case study of a beverage distributor. The results show the effectiveness of our approach, demonstrating the potential to utilize the available capacity on vehicles returning to the depot to create profitable and environmentally friendly routes, and so enhancing efficient, cost-effective, and sustainable logistics activities.
2026
Autores
Ferreira, MC; da Silva, JFL; Abrantes, D; Hora, J; Felício, S; Gal?ao, T; Coimbra, MT;
Publicação
Lecture Notes in Mobility
Abstract
This study focuses on providing meaningful information to vulnerable road users (VRUs) to support their objectives and perceptions while navigating urban spaces, employing a novel route planning concept. Through three focus group sessions, a comprehensive survey was conducted to identify the needs and concerns of VRUs, leading to the development of an integrated and collaborative mobile application for active mobility. The application encompasses route calculation, prioritizing safety, comfort, civic participation, and empathy. The solution aims to bridge citizen users and city managers, facilitating alerts, historical information on safety and comfort, and collaborative problem-solving and sharing of urban attractions. A prototype of the concept was developed and extensively tested by potential users, and subjective evaluation and feedback demonstrated the usefulness and added value of the integrated and collaborative approach. This study highlights the proposed solution relevance and differentiation from official alerts, user experiences, and civic participation, positioning it as a comprehensive solution for active mobility. © 2025 Elsevier B.V., All rights reserved.
2026
Autores
Costa, L; Barbosa, S; Cunha, J;
Publicação
Future Gener. Comput. Syst.
Abstract
In recent years, the research community, but also the general public, has raised serious questions about the reproducibility and replicability of scientific work. Since many studies include some kind of computational work, these issues are also a technological challenge, not only in computer science, but also in most research domains. Computational replicability and reproducibility are not easy to achieve due to the variety of computational environments that can be used. Indeed, it is challenging to recreate the same environment via the same frameworks, code, programming languages, dependencies, and so on. We propose a framework, known as SciRep, that supports the configuration, execution, and packaging of computational experiments by defining their code, data, programming languages, dependencies, databases, and commands to be executed. After the initial configuration, the experiments can be executed any number of times, always producing exactly the same results. Our approach allows the creation of a reproducibility package for experiments from multiple scientific fields, from medicine to computer science, which can be re-executed on any computer. The produced package acts as a capsule, holding absolutely everything necessary to re-execute the experiment. To evaluate our framework, we compare it with three state-of-the-art tools and use it to reproduce 18 experiments extracted from published scientific articles. With our approach, we were able to execute 16 (89%) of those experiments, while the others reached only 61%, thus showing that our approach is effective. Moreover, all the experiments that were executed produced the results presented in the original publication. Thus, SciRep was able to reproduce 100% of the experiments it could run. © 2025 The Authors
2026
Autores
Beck, E; Morgado, LC; O’Shea, M;
Publicação
Communications in Computer and Information Science
Abstract
Since the publication of the 2020 paper, “Finding the Gaps About Uses of Immersive Learning Environments: A Survey of Surveys,” the landscape of immersive learning environments (ILEs) has continued to evolve rapidly. This update aims to revisit the gaps identified in that previous research and explore emerging trends. We conducted an extensive review of new surveys published after that paper’s cut date. Our findings reveal a significant amount of new published reviews (n?=?64), more than doubling the original corpus (n?=?47). The results highlighted novel themes of usage of immersive environments, helping bridge some 2020 research gaps. This paper discusses those developments and presents a consolidated perspective on the uses of immersive learning environments. © 2025 Elsevier B.V., All rights reserved.
2026
Autores
Lourenço, CB; Pinto, JS;
Publicação
SCIENCE OF COMPUTER PROGRAMMING
Abstract
In this paper, we introduce a novel approach for rigorously verifying safety properties of state machine specifications. Our method leverages an auto-active verifier and centers around the use of action functions annotated with contracts. These contracts facilitate inductive invariant checking, ensuring correctness during system execution. Our approach is further supported by the Why3-do library, which extends the Why3 tool's capabilities to verify concurrent and distributed algorithms using state machines. Two distinctive features of Why3-do are: (i) it supports specification refinement through refinement mappings, enabling hierarchical reasoning about distributed algorithms; and (ii) it can be easily extended to make verifying specific classes of systems more convenient. In particular, the library contains models allowing for message-passing algorithms to be described with programmed handlers, assuming different network semantics. A gallery of examples, all verified with Why3 using SMT solvers as proof tools, is also described in the paper. It contains several auto-actively verified concurrent and distributed algorithms, including the Paxos consensus algorithm.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.