2026
Authors
Ribeiro, RP; Pfahringer, B; Japkowicz, N; Larrañaga, P; Jorge, AM; Soares, C; Abreu, PH; Gama, J;
Publication
ECML/PKDD (2)
Abstract
2026
Authors
Ribeiro, RP; Pfahringer, B; Japkowicz, N; Larrañaga, P; Jorge, AM; Soares, C; Abreu, PH; Gama, J;
Publication
ECML/PKDD (1)
Abstract
2026
Authors
Morgado, L;
Publication
IMMERSIVE LEARNING RESEARCH NETWORK, ILRN 2025
Abstract
This work reflects upon what Immersion can mean from the perspective of an Artificial Intelligence (AI). Applying the lens of immersive learning theory, it seeks to understand whether this new perspective supports ways for AI participation in cognitive ecologies. By treating AI as a participant rather than a tool, it explores what other participants (humans and other AIs) need to consider in environments where AI can meaningfully engage and contribute to the cognitive ecology, and what the implications are for designing such learning environments. Drawing from the three conceptual dimensions of immersion-System, Narrative, and Agency-this work reinterprets AIs in immersive learning contexts. It outlines practical implications for designing learning environments where AIs are surrounded by external digital services, can interpret a narrative of origins, changes, and structural developments in data, and dynamically respond, making operational and tactical decisions that shape human-AI collaboration. Finally, this work suggests how these insights might influence the future of AI training, proposing that immersive learning theory can inform the development of AIs capable of evolving beyond static models. This paper paves the way for understanding AI as an immersive learner and participant in evolving human-AI cognitive ecosystems.
2026
Authors
Camarinha-Matos, LM; Ortiz, A; Boucher, X; Lucas Soares, A;
Publication
IFIP Advances in Information and Communication Technology
Abstract
2026
Authors
, R; Reis, A; Branco, FA; Alves, P;
Publication
Communications in Computer and Information Science
Abstract
Higher Education Institutions (HEIs) face significant challenges in managing and integrating diverse Information System (ISs) that support academic, administrative, and strategic operations. As digital transformation advances, the need for seamless interoperability and data-driven governance becomes increasingly crucial. This study provides a comprehensive analysis of the ISs Ecosystem (ISE) in HEIs, emphasizing the importance of system integration, Business Intelligence (BI) solutions, and Decision Support Systems (DSS) in fostering efficient, data-driven decision-making. By examining a real-world case study of the University of Trás-os-Montes and Alto Douro (UTAD), this research validates the role of BI in transforming fragmented information landscapes into cohesive digital environments. The findings demonstrate that successful BI adoption requires well-defined governance structures, seamless data flow, and alignment with institutional objectives. Additionally, the study underscores the strategic impact of interoperability, highlighting how institutions can enhance institutional intelligence, streamline decision-making processes, and improve operational efficiency through an integrated BI ecosystem. The insights contribute to ongoing discussions on digital transformation in higher education, offering a scalable framework for HEIs seeking to transition from isolated systems to an interoperable and intelligent data ecosystem. The paper also explores emerging trends such as AI-driven analytics and predictive modelling, outlining potential pathways for HEIs to further optimize their decision-support infrastructures. © 2025 Elsevier B.V., All rights reserved.
2026
Authors
Chaves, AC; Alonso, AN; Soares, AL;
Publication
ADVANCES IN PRODUCTION MANAGEMENT SYSTEMS. CYBER-PHYSICAL-HUMAN PRODUCTION SYSTEMS: HUMAN-AI COLLABORATION AND BEYOND, APMS 2025, PT V
Abstract
The increasing adoption of the Digital Twin concept and technology for managing complex physical assets has led to the emergence of Digital Twin Ecosystems, where interconnected digital twins generate additional value. However, ensuring seamless data sharing and interoperability among diverse systems presents significant challenges. Although research on digital twin architectures has advanced, gaps remain in addressing data governance, security, and stakeholders' trust. This study performs a comprehensive literature review to investigate architectural solutions to overcome challenges in digital twin ecosystems. The findings identify key requirements such as interoperability, governance, and data management, emphasizing the role of Data Spaces as enablers of secure data sharing. By structuring the requirements for digital twin ecosystem architectures, this paper identifies gaps suggesting future research on scalable and sustainable digital twin ecosystem implementations. These insights are expected to contribute to the development of frameworks that integrate technical advances with organizational and regulatory considerations, ultimately fostering the adoption of digital twin ecosystems across industries.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.