Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

2025

Decoding the privacy puzzle: A study on AI deployment in public governance

Authors
Saura, JR; Barbosa, B; Rana, S;

Publication
Handbook on Governance and Data Science

Abstract
The development of artificial intelligence (AI) in the last decade has reshaped government operations and raised privacy concerns as automated processes become commonplace. This study aims to identify the main privacy issues associated with government use of AI in public services. Using a bibliometric analysis that includes co-citation of references and authors, bibliographic coupling, and keyword co-occurrence approaches, the study analyzed the literature on this topic through VOSViewer and the Web of Science database. Findings highlight significant privacy concerns: (i) opaque data-driven decisions, (ii) bias in predictive algorithms, (iii) difficulty obtaining explanations for decisions, (iv) mistrust in AI systems, (v) ethical lapses in AI execution, and (vi) trust deficit in government AI use. Additionally, 18 research questions are defined, addressing ethical limits of privacy in AI government use. A consensus in the literature urges governments to enact laws ensuring data privacy "by default" in AI decision-making and data management/transfer to third parties. © The Editor and Contributing Authors Severally 2025. All rights reserved.

2025

Perceived freshness and the intention to repurchase fresh food products online

Authors
Ferreira, D; Barbosa, B; Sousa, A;

Publication
EUROMED JOURNAL OF BUSINESS

Abstract
PurposeFresh food products remain one of the most challenging product categories for e-commerce managers. The literature emphasizes the importance of perceived freshness in explaining their purchase behavior. However, studies on online purchases of fresh food products are scarce, especially regarding repurchase intentions, and the role of perceived freshness in online settings has so far been disregarded. This research addresses this gap by examining the role of perceived freshness in the intention to repurchase fresh food products online.Design/methodology/approachGuided by the expectation confirmation theory (ECT) and the perceived risk theory, this study defined a set of hypotheses tested through structural equation modeling. Participants were consumers with previous experience in purchasing fresh food products online.FindingsThe findings indicate that the importance of sensory attributes negatively affected the perceived freshness of fresh food products purchased online, while the importance of non-sensory attributes had a non-significant impact. Expectations of freshness positively affected perceived freshness and confirmation of freshness, as suggested by ECT. The hypothesized positive effects of confirmation on satisfaction and of satisfaction on intention to repurchase fresh food products online were also supported. Finally, it was found that repurchase intention was negatively affected by perceived performance risk and financial risk.Originality/valueThis article contributes to the limited literature on online purchase of fresh food by focusing on perceived freshness as a determinant of repurchase intention.

2025

Characterising Class Imbalance in Transportation Mode Detection: An Experimental Study

Authors
Muhammad, AR; Aguiar, A; Mendes-Moreira, J;

Publication
INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2024, PT II

Abstract
This study investigates the impact of class imbalance and its potential interplay with other factors on machine learning models for transportation mode classification, utilising two real-world GPS trajectory datasets. A Random Forest model serves as the baseline, demonstrating strong performance on the relatively balanced dataset but experiencing significant degradation on the imbalanced one. To mitigate this effect, we explore various state-of-the-art class imbalance learning techniques, finding only marginal improvements. Resampling the fairly balanced dataset to replicate the imbalanced distribution suggests that factors beyond class imbalance are at play. We hypothesise and provide preliminary evidence for class overlap as a potential contributing factor, underscoring the need for further investigation into the broader range of classification difficulty factors. Our findings highlight the importance of balanced class distributions and a deeper understanding of factors such as class overlap in developing robust and generalisable models for transportation mode detection.

2025

Real-Time Registration of 3D Underwater Sonar Scans

Authors
Ferreira, A; Almeida, J; Matos, A; Silva, E;

Publication
ROBOTICS

Abstract
Due to space and energy restrictions, lightweight autonomous underwater vehicles (AUVs) are usually fitted with low-power processing units, which limits the ability to run demanding applications in real time during the mission. However, several robotic perception tasks reveal a parallel nature, where the same processing routine is applied for multiple independent inputs. In such cases, leveraging parallel execution by offloading tasks to a GPU can greatly enhance processing speed. This article presents a collection of generic matrix manipulation kernels, which can be combined to develop parallelized perception applications. Taking advantage of those building blocks, we report a parallel implementation for the 3DupIC algorithm-a probabilistic scan matching method for sonar scan registration. Tests demonstrate the algorithm's real-time performance, enabling 3D sonar scan matching to be executed in real time onboard the EVA AUV.

2025

Women's views on empowerment in menopause-related femvertising on social media

Authors
Barbosa, B; Amorim, AS;

Publication
INTERNATIONAL REVIEW ON PUBLIC AND NONPROFIT MARKETING

Abstract
This article aims to explore menopausal women's views on empowerment in menopause-related femvertising on social media and to examine its outcomes for both women and brands. It includes a qualitative study comprising in-depth interviews with menopausal women who were active social media users (n = 15). The data were subject to content analysis using NVIVO software. The results reveal that menopause empowerment strategies on social media are perceived by women as a source of knowledge, facilitating social support, focusing on self-worth enhancement, and deconstructing stereotypes and taboos. Despite positive impacts such as self-esteem and self-confidence, these messages can also induce discomfort and feelings of segregation. Although the study highlights potential benefits for brands, including improved image and engagement, it also identifies risks such as skepticism, distrust, and customer loss. This research contributes to the femvertising and branding literature by addressing the largely overlooked segment of menopausal women. It highlights knowledge dissemination as a critical and previously underexplored dimension of femvertising and demonstrates that menopause empowerment carries distinct dynamics and consequences for both women and advertising brands, shedding light on the complexity of femvertising strategies. The findings can assist brands and social organizations aiming to develop more effective strategies for engaging menopausal audiences.

2025

Maximum-expectation matching under recourse

Authors
Pedroso, JP; Ikeda, S;

Publication
Eur. J. Oper. Res.

Abstract
This paper addresses the problem of maximizing the expected size of a matching in the case of unreliable vertices and/or edges. The assumption is that the solution is built in several steps. In a given step, edges with successfully matched vertices are made permanent; but upon edge or vertex failures, the remaining vertices become eligible for reassignment. This process may be repeated a given number of times, and the objective is to end with the overall maximum number of matched vertices. An application of this problem is found in kidney exchange programs, going on in several countries, where a vertex is an incompatible patient–donor pair and an edge indicates cross-compatibility between two pairs; the objective is to match these pairs so as to maximize the number of served patients. A new scheme is proposed for matching rearrangement in case of failure, along with a prototype algorithm for computing the optimal expectation for the number of matched edges (or vertices), considering a possibly limited number of rearrangements. Computational experiments reveal the relevance and limitations of the algorithm, in general terms and for the kidney exchange application. © 2025 The Authors

  • 11
  • 4235