2025
Authors
Oliveira, BB; Ahipasaoglu, SD;
Publication
TRANSPORTATION RESEARCH PART E-LOGISTICS AND TRANSPORTATION REVIEW
Abstract
Balancing supply and demand in free-floating one-way carsharing systems is a critical operational challenge. This paper presents a novel approach that integrates a binary logit model into a mixed integer linear programming framework to optimize short-term pricing and fleet relocation. Demand modeling, based on a binary logit model, aggregates different trips under a unified utility model and improves estimation by incorporating information from similar trips. To speed up the estimation process, a categorizing approach is used, where variables such as location and time are classified into a few categories based on shared attributes. This is particularly beneficial for trips with limited observations as information gained from similar trips can be used for these trips effectively. The modeling framework adopts a dynamic structure where the binary logit model estimates demand using accumulated observations from past iterations at each decision point. This continuous learning environment allows for dynamic improvement in estimation and decision-making. At the core of the framework is a mathematical program that prescribes optimal levels of promotion and relocation. The framework then includes simulated market responses to the decisions, allowing for real-time adjustments to effectively balance supply and demand. Computational experiments demonstrate the effectiveness of the proposed approach and highlight its potential for real-world applications. The continuous learning environment, combining demand modeling and operational decisions, opens avenues for future research in transportation systems.
2025
Authors
Vilaça, L; Yu, Y; Viana, P;
Publication
ACM COMPUTING SURVEYS
Abstract
Audio-visual correlation learning aims at capturing and understanding natural phenomena between audio and visual data. The rapid growth of Deep Learning propelled the development of proposals that process audio-visual data and can be observed in the number of proposals in the past years. Thus encouraging the development of a comprehensive survey. Besides analyzing the models used in this context, we also discuss some tasks of definition and paradigm applied in AI multimedia. In addition, we investigate objective functions frequently used and discuss how audio-visual data is exploited in the optimization process, i.e., the different methodologies for representing knowledge in the audio-visual domain. In fact, we focus on how human-understandable mechanisms, i.e., structured knowledge that reflects comprehensible knowledge, can guide the learning process. Most importantly, we provide a summarization of the recent progress of Audio-Visual Correlation Learning (AVCL) and discuss the future research directions.
2025
Authors
Guimarães, V; Nascimento, J; Viana, P; Carvalho, P;
Publication
Applied Sciences
Abstract
2025
Authors
Santo, LP; Bashford-Rogers, T; Barbosa, J; Navrátil, P;
Publication
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
Abstract
Rendering on conventional computers is capable of generating realistic imagery, but the computational complexity of these light transport algorithms is a limiting factor of image synthesis. Quantum computers have the potential to significantly improve rendering performance through reducing the underlying complexity of the algorithms behind light transport. This article investigates hybrid quantum-classical algorithms for ray tracing, a core component of most rendering techniques. Through a practical implementation of quantum ray tracing in a 3D environment, we show quantum approaches provide a quadratic improvement in query complexity compared to the equivalent classical approach. Based on domain specific knowledge, we then propose algorithms to significantly reduce the computation required for quantum ray tracing through exploiting image space coherence and a principled termination criteria for quantum searching. We show results obtained using a simulator for both Whitted style ray tracing, and for accelerating ray tracing operations when performing classical Monte Carlo integration for area lights and indirect illumination.
2025
Authors
Ramôa, M; Santos, LP; Mayhall, NJ; Barnes, E; Economou, SE;
Publication
QUANTUM SCIENCE AND TECHNOLOGY
Abstract
Adaptive protocols enable the construction of more efficient state preparation circuits in variational quantum algorithms (VQAs) by utilizing data obtained from the quantum processor during the execution of the algorithm. This idea originated with Adaptive Derivative-Assembled Problem-Tailored variational quantum eigensolver (ADAPT-VQE), an algorithm that iteratively grows the state preparation circuit operator by operator, with each new operator accompanied by a new variational parameter, and where all parameters acquired thus far are optimized in each iteration. In ADAPT-VQE and other adaptive VQAs that followed it, it has been shown that initializing parameters to their optimal values from the previous iteration speeds up convergence and avoids shallow local traps in the parameter landscape. However, no other data from the optimization performed at one iteration is carried over to the next. In this work, we propose an improved quasi-Newton optimization protocol specifically tailored to adaptive VQAs. The distinctive feature in our proposal is that approximate second derivatives of the cost function are recycled across iterations in addition to optimal parameter values. We implement a quasi-Newton optimizer where an approximation to the inverse Hessian matrix is continuously built and grown across the iterations of an adaptive VQA. The resulting algorithm has the flavor of a continuous optimization where the dimension of the search space is augmented when the gradient norm falls below a given threshold. We show that this inter-optimization exchange of second-order information leads the approximate Hessian in the state of the optimizer to be consistently closer to the exact Hessian. As a result, our method achieves a superlinear convergence rate even in situations where the typical implementation of a quasi-Newton optimizer converges only linearly. Our protocol decreases the measurement costs in implementing adaptive VQAs on quantum hardware as well as the runtime of their classical simulation.
2025
Authors
Jose Villar; João Mello;
Publication
Towards Future Smart Power Systems with High Penetration of Renewables
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.