Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

Rui Campos has a PhD degree in Electrical and Computers Engineering in 2011, from University of Porto. Currently, he leads the “Wireless Networks” research area (http://win.inescporto.pt) of the Centre for Telecommunications and Multimedia consisting of 30 researchers, and he is an IEEE Senior Member. He has coordinated several research projects, including: SIMBED in Fed4FIRE+ Open Call 3, UGREEN, BLUECOM+, MareCom, MTGrid, the WiFIX action approved in CONFINE Open Call 1, Mare-Fi, Under-Fi, ReCoop, and HiperWireless. Rui Campos has participated in several research projects, including the following European projects: H2020 Fed4FIRE+, H2020 RAWFIE, FP7 SUNNY, FP7 CONFINE, FP6 Ambient Networks Phase 1, and FP6 Ambient Networks Phase 2. His research interests include medium access control, radio resource management, mobility management, and network auto-configuration in emerging wireless networks, with special focus on flying networks, maritime networks, and underwater networks.

Interest
Topics
Details

Details

  • Name

    Rui Lopes Campos
  • Role

    Research Coordinator
  • Since

    17th February 2003
040
Publications

2025

Edge-Enabled UAV Swarm Deployment for Rapid Post-Disaster Search and Rescue

Authors
Abdellatif, AA; Fontes, H; Coelho, A; Pessoa, LM; Campos, R;

Publication
2025 IEEE Virtual Conference on Communications (VCC)

Abstract

2025

eSUPPLY: Efficient Energy-Aware Multi-UAV Placement in Flying Networks

Authors
Ribeiro, P; Coelho, A; Campos, R;

Publication
2025 13th Wireless Days Conference (WD)

Abstract

2025

A Framework Leveraging Large Language Models for Autonomous UAV Control in Flying Networks

Authors
Nunes, D; Amorim, R; Ribeiro, P; Coelho, A; Campos, R;

Publication
2025 IEEE INTERNATIONAL MEDITERRANEAN CONFERENCE ON COMMUNICATIONS AND NETWORKING, MEDITCOM

Abstract
This paper proposes FLUC, a modular framework that integrates open-source Large Language Models (LLMs) with Unmanned Aerial Vehicle (UAV) autopilot systems to enable autonomous control in Flying Networks (FNs). FLUC translates high-level natural language commands into executable UAV mission code, bridging the gap between operator intent and UAV behaviour. FLUC is evaluated using three open-source LLMs - Qwen 2.5, Gemma 2, and LLaMA 3.2 - across scenarios involving code generation and mission planning. Results show that Qwen 2.5 excels in multi-step reasoning, Gemma 2 balances accuracy and latency, and LLaMA 3.2 offers faster responses with lower logical coherence. A case study on energy-aware UAV positioning confirms FLUC's ability to interpret structured prompts and autonomously execute domain-specific logic, showing its effectiveness in real-time, mission-driven control.

2025

Converge: towards an efficient multi-modal sensing research infrastructure for next-generation 6 G networks

Authors
Teixeira, FB; Ricardo, M; Coelho, A; Oliveira, HP; Viana, P; Paulino, N; Fontes, H; Marques, P; Campos, R; Pessoa, L;

Publication
EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING

Abstract
Telecommunications and computer vision solutions have evolved significantly in recent years, allowing a huge advance in the functionalities and applications offered. However, these two fields have been making their way as separate areas, not exploring the potential benefits of merging the innovations brought from each of them. In challenging environments, for example, combining radio sensing and computer vision can strongly contribute to solving problems such as those introduced by obstructions or limited lighting. Machine learning algorithms, able to fuse heterogeneous and multi-modal data, are also a key element for understanding and inferring additional knowledge from raw and low-level data, able to create a new abstracting level that can significantly enhance many applications. This paper introduces the CONVERGE vision-radio concept, a new paradigm that explores the benefits of integrating two fields of knowledge towards the vision of View-to-Communicate, Communicate-to-View. The main concepts behind this vision, including supporting use cases and the proposed architecture, are presented. CONVERGE introduces a set of tools integrating wireless communications and computer vision to create a novel experimental infrastructure that will provide open datasets to the scientific community of both experimental and simulated data, enabling new research addressing various 6 G verticals, including telecommunications, automotive, manufacturing, media, and health.

2025

On the Energy Consumption of Rotary-Wing and Fixed-Wing UAVs in Flying Networks

Authors
Ribeiro, P; Coelho, A; Campos, R;

Publication
2025 20TH WIRELESS ON-DEMAND NETWORK SYSTEMS AND SERVICES CONFERENCE, WONS

Abstract
Unmanned Aerial Vehicles (UAVs) are increasingly employed to enable wireless communications, serving as communications nodes. In previous work, we proposed the Sustainable multi-UAV Performance-aware Placement (SUPPLY) algorithm, which focuses on the energy-efficient placement of multiple UAVs acting as Flying Access Points (FAPs). We also developed the Multi-UAV Energy Consumption (MUAVE) simulator to evaluate UAV energy consumption. However, MUAVE was designed to compute the energy consumption for rotary-wing UAVs only. In this paper, we propose eMUAVE, an enhanced version of the MUAVE simulator that enables the evaluation of the energy consumption for both rotary-wing and fixed-wing UAVs. We then use eMUAVE to evaluate the energy consumption of rotary-wing and fixed-wing UAVs in reference and random networking scenarios. The results show that rotary-wing UAVs are typically more energy-efficient than fixed-wing UAVs when following SUPPLY-defined trajectories.