Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About
Download Photo HD

About

Rui Campos has a PhD degree in Electrical and Computers Engineering in 2011, from University of Porto. Currently, he leads the “Wireless Networks” research area (http://win.inescporto.pt) of the Centre for Telecommunications and Multimedia consisting of 30 researchers, and he is an IEEE Senior Member. He has coordinated several research projects, including: SIMBED in Fed4FIRE+ Open Call 3, UGREEN, BLUECOM+, MareCom, MTGrid, the WiFIX action approved in CONFINE Open Call 1, Mare-Fi, Under-Fi, ReCoop, and HiperWireless. Rui Campos has participated in several research projects, including the following European projects: H2020 Fed4FIRE+, H2020 RAWFIE, FP7 SUNNY, FP7 CONFINE, FP6 Ambient Networks Phase 1, and FP6 Ambient Networks Phase 2. His research interests include medium access control, radio resource management, mobility management, and network auto-configuration in emerging wireless networks, with special focus on flying networks, maritime networks, and underwater networks.

Interest
Topics
Details

Details

033
Publications

2021

Joint Traffic-Aware UAV Placement and Predictive Routing for Aerial Networks

Authors
Almeida, EN; Coelho, A; Ruela, J; Campos, R; Ricardo, M;

Publication
CoRR

Abstract

2021

Reproducible MIMO operation in ns-3 using trace-based wi-fi rate adaptation

Authors
Lamela, V; Fontes, H; Ruela, J; Ricardo, M; Campos, R;

Publication
ACM International Conference Proceeding Series

Abstract
Today, wireless networks are operating in increasingly complex environments, impacting the evaluation and validation of new networking solutions. Simulation, although fully controllable and easily reproducible, depends on simplified physical layer and channel models, which often produce optimistic results. Experimentation is also influenced by external random phenomena and limited testbed scale and availability, resulting in hardly repeatable and reproducible results. Previously, we have proposed the Trace-based Simulation (TS) approach to address the problem. TS uses traces of radio link quality and position of nodes to accurately reproduce past experiments in ns-3. Yet, in its current version, TS is not compatible with scenarios where Multiple-In-Multiple-Out (MIMO) is used. This is especially relevant since ns-3 assumes perfectly independent MIMO radio streams. In this paper, we introduce the Trace-based Wi-Fi Station Manager Model, which is capable of reproducing the Rate Adaptation of past Wi-Fi experiments, including the number of effective radio streams used. To validate the proposed model, the network throughput was measured in different experiments performed in the w-iLab.t testbed, considering Single-In-Single-Out (SISO) and MIMO operation using IEEE 802.11a/n/ac standards. The experimental results were then compared with the network throughput achieved using the improved TS and Pure Simulation (PS) approaches, validating the new proposed model and confirming its relevance to reproduce experiments previously executed in real environments. © 2021 ACM.

2021

Traffic-aware Gateway Placement for High-capacity Flying Networks

Authors
Coelho, A; Fontes, H; Campos, R; Ricardo, M;

Publication
2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring)

Abstract

2021

A Fast Gateway Placement Algorithm for Flying Networks

Authors
Santos, G; Martins, J; Coelho, A; Fontes, H; Ricardo, M; Campos, R;

Publication
CoRR

Abstract

2021

A Novel Simulation Platform for Underwater Data Muling Communications Using Autonomous Underwater Vehicles

Authors
Teixeira F.B.; Ferreira B.M.; Moreira N.; Abreu N.; Villa M.; Loureiro J.P.; Cruz N.A.; Alves J.C.; Ricardo M.; Campos R.;

Publication
Computers

Abstract
Autonomous Underwater Vehicles (AUVs) are seen as a safe and cost-effective platforms for performing a myriad of underwater missions. These vehicles are equipped with multiple sensors which, combined with their long endurance, can produce large amounts of data, especially when used for video capturing. These data need to be transferred to the surface to be processed and analyzed. When considering deep sea operations, where surfacing before the end of the mission may be unpractical, the communication is limited to low bitrate acoustic communications, which make unfeasible the timely transmission of large amounts of data unfeasible. The usage of AUVs as data mules is an alternative communications solution. Data mules can be used to establish a broadband data link by combining short-range, high bitrate communications (e.g., RF and wireless optical) with a Delay Tolerant Network approach. This paper presents an enhanced version of UDMSim, a novel simulation platform for data muling communications. UDMSim is built upon a new realistic AUV Motion and Localization (AML) simulator and Network Simulator 3 (ns-3). It can simulate the position of the data mules, including localization errors, realistic position control adjustments, the received signal, the realistic throughput adjustments, and connection losses due to the fast SNR change observed underwater. The enhanced version includes a more realistic AML simulator and the antenna radiation patterns to help evaluating the design and relative placement of underwater antennas. The results obtained using UDMSim show a good match with the experimental results achieved using an underwater testbed. UDMSim is made available to the community to support easy and faster evaluation of underwater data muling oriented communications solutions and to enable offline replication of real world experiments.

Supervised
thesis

2021

Joint Routing and Placement of Flying Backhaul Networks

Author
André Filipe Pinto Coelho

Institution
UP-FEUP

2021

Trace-based ns3-gym Reinforcement Learning Environment Framework for Wireless Networks

Author
Gonçalo Regueiras dos Santos

Institution
UP-FEUP

2021

Topology Control of Flying Backhaul Mesh Networks

Author
Eduardo Nuno Moreira Soares de Almeida

Institution
UP-FEUP

2021

An SDN-based Overlay Networking Solution for Transparent Multi-homed Vehicular Communications

Author
Agostinho Filipe de Almeida Coimbra Maia

Institution
UP-FEUP

2021

Acoustic Networking for Controlling Underwater Data Mules

Author
Mariam Ahmed Osman Ahmed Mohamed

Institution
UP-FEUP