Details
Name
Pedro Henrique MouraRole
ResearcherSince
01st September 2018
Nationality
PortugalCentre
Robotics in Industry and Intelligent SystemsContacts
+351220413317
pedro.h.moura@inesctec.pt
2026
Authors
Pinheiro, I; Moura, P; Rodrigues, L; Pacheco, AP; Teixeira, JG; Valente, LG; Cunha, M; Neves Dos Santos, FN;
Publication
Agricultural Systems
Abstract
In 2023, global kiwifruit production reached over 4.4 million tonnes, highlighting the crop's significant economic importance. However, achieving high yields depends on adequate pollination. In Actinidia species, pollen is transferred by insects from male to female flowers on separate plants. Natural pollination faces increasing challenges due to the decline in pollinator populations and climate variability, driving the adoption of assisted pollination methods. This study examines the Portuguese kiwifruit sector, one of the world's top 12 producers, using a novel mixed-methods approach that integrates both qualitative and quantitative analyses to assess the feasibility of robotic pollination. The qualitative study identifies the benefits and challenges of current methods and explores how robotic pollination could address these challenges. The quantitative analysis explores the cost-effectiveness and practicality of implementing robotic pollination as a product and service. Findings indicate that most farmers use handheld pollination devices but face pollen wastage and application timing challenges. Economic analysis establishes a break-even point of €685 per hectare for an annual single application, with a first robotic pollination of €17 146 becoming cost-effective for orchards of at least 3.5 hectares and a second robotic solution of €34 293 becoming cost-effective for orchards up to 7 hectares. A robotic pollination service priced at €685 per hectare per application presents a low-risk and a viable alternative for growers. This study provides robust economic insights supporting the adoption of robotic pollination technologies. This study is crucial to make informed decisions to enhance kiwifruit production's productivity and sustainability through precise robotic-assisted pollination. © 2025 Elsevier B.V., All rights reserved.
2025
Authors
Castro, JT; Pinheiro, I; Marques, MN; Moura, P; dos Santos, FN;
Publication
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Abstract
In nature, and particularly in agriculture, pollination is fundamental for the sustainability of our society. In this context, pollination is a vital process underlying crop yield quality and is responsible for the biodiversity and the standards of the flora. Bees play a crucial role in natural pollination; however, their populations are declining. Robots can help maintain pollination levels while humans work to recover bee populations. Swarm robotics approaches appear promising for robotic pollination. This paper proposes the cooperation between multiple Unmanned Aerial Vehicles (UAVs) and an Unmanned Ground Vehicle (UGV), leveraging the advantages of collaborative work for pollination, referred to as Pollinationbots. Pollinationbots is based in swarm behaviors and methodologies to implement more effective pollination strategies, ensuring efficient pollination across various scenarios. The paper presents the architecture of the Pollinationbots system, which was evaluated using the Webots simulator, focusing on path planning and follower behavior. Preliminary simulation results indicate that this is a viable solution for robotic pollination. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.
2024
Authors
Costa, A; Pereira, A; Pinho, L; Gregório, H; Santos, F; Moura, P; Marcos, R; Martins, RC;
Publication
The 4th International Electronic Conference on Biosensors
Abstract
2023
Authors
Moura, P; Pinheiro, I; Terra, F; Pinho, T; Santos, F;
Publication
The 3rd International Electronic Conference on Agronomy
Abstract
2023
Authors
Rodrigues, L; Moura, P; Terra, F; Carvalho, AM; Sarmento, J; dos Santos, FN; Cunha, M;
Publication
The 3rd International Electronic Conference on Agronomy
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.