Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

Dr. Leonel Carvalho was born in Espinho, Portugal, in 1985. He received his B.Sc., M.Sc., and Ph.D. degrees in Electrical Engineering from the Faculty of Engineering of the University of Porto (FEUP), Portugal, in 2006, 2008, and 2013, respectively. Currently, he is a senior researcher at INESC TEC. In 2011, he was a Visiting Researcher at the Institute of Electric Systems and Energy of the Federal University of Itajubá (UNIFEI), Minas Gerais, Brazil, where he was engaged in research activities related with the use of the Cross-Entropy Method for improving the Reliability Assessment of large-scale power systems. In 2014, he was the winner of the IEEE International Competition on the Application of Modern Heuristic Optimization Algorithms for Solving Optimal Power Flow Problems organized by the IEEE PES Working Group on Modern Heuristic Optimization, with the algorithm entitled “DEEPSO as a successful blend of evolutionary and swarm search strategies in the OPF challenge”. In 2015, he held the Auxiliary Professor position at the Universidade Lusíada of Vila Nova de Famalicão where he was responsible of several courses of the Licenciatura degree in Eletronic and Computer Engineering. Dr. Leonel has co-supervised several M.Sc. theses, one of which was granted the first place in 2015 edition of the prestigious REN Prize, which is an award aiming at distinguishing the best M.Sc. theses completed in Portuguese higher education institutions in the fields of Engineering, Economics, Mathematics, Physics, Chemistry, Information Systems and Computer Science. As a researcher in INESC TEC, he has been involved in several national and international R&D projects amongst which is worth highlighting the RESERVE project with the Portuguese TSO, the ARGUS project with the Argonne National Laboratory in the USA, the FP7 projects MERGE, STABALID, evolvDSO, and iTESLA and the H2020 project SENSIBLE. He has authored and co-authored several papers in peer-reviewed journals as well as in international conferences. His current research interests include power system Reliability Assessment and the application of Computational Intelligence algorithms to power system optimization problems.

Interest
Topics
Details

Details

  • Name

    Leonel Magalhães Carvalho
  • Cluster

    Power and Energy
  • Role

    Area Manager
  • Since

    18th February 2008
028
Publications

2023

A Data-driven Approach to Estimate the Flexibility Maps in Multiple TSO-DSO Connections

Authors
Silva, J; Sumaili, J; Silva, B; Carvalho, L; Retorta, F; Staudt, M; Miranda, V;

Publication
IEEE TRANSACTIONS ON POWER SYSTEMS

Abstract

2022

Multi-objective identification of critical distribution network assets in large interruption datasets

Authors
Marcelino, CG; Torres, V; Carvalho, L; Matos, M; Miranda, V;

Publication
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS

Abstract
Performance indicators, such as the SAIFI and the SAIDI, are commonly used by regulatory agencies to evaluate the performance of distribution companies (DisCos). Based on such indicators, it is common practice to apply penalties or grant rewards if the indicators are greater to or less than a given threshold. This work proposes a new multi-objective optimization model for pinpointing the critical assets involved in outage events based on past performance indicators, such as the SAIDI and the System Average Interruption Duration Exceeding Threshold (SAIDET) indexes. Our approach allows to retrieve the minimal set of assets in large historical interruption datasets that most contribute to past performance indicators. A case study using a real interruption dataset between the years 2011–2104 from a Brazilian DisCo revealed that the optimal inspection plan according to the decision maker preferences consist of 332 equipment out of a total of 5873. This subset of equipment, which contribute 61.90% and 55.76% to the observed SAIFI and SAIDET indexes in that period, can assist managerial decisions for preventive maintenance actions by prioritizing technical inspections to assets deemed as critical. © 2021

2022

Quantifying the Difference Between Resilience and Reliability in the Operation Planning of Mobile Resources for Power Distribution Grids

Authors
Lotfi, M; Panteli, M; Venkatasubramanian, BV; Javadi, MS; Carvalho, LM; Gouveia, CS;

Publication
Findings

Abstract
Modern power grids have high levels of distributed energy resources, automation, and inherent flexibility. Those characteristics have been proven to be favorable from an environmental, social and economic perspective. Despite the increased versatility, modern grids are becoming more vulnerable to high-impact low-probability (HILP) threats, particularly for the distribution networks. On one hand, this is due to the increasing frequency and severity of weather events and natural disasters. On the other hand, it is aggravated by the increased complexity of smart grids. Resilience is broadly defined as the capability of a system to mitigate the effects of and recover from HILP events, which is often confused with reliability that is concerned with low-impact high-probability (LIHP) ones. In this paper, a distribution system in Portugal is simulated to showcase how the utilization of flexibility and mobile energy resources (MERs) should be considered differently relative to HILP vs LIHP threats.

2022

Fault indicator placement optimization using the cross-entropy method and traffic simulation data

Authors
Cardoso, ML; Venturini, LF; Baracy, YL; Ulisses, IMB; Bremermann, LE; Grilo Pavani, AP; Carvalho, LM; Issicaba, D;

Publication
ELECTRIC POWER SYSTEMS RESEARCH

Abstract
This paper presents an approach to optimize the placement of fault indicator devices in distribution systems using the cross-entropy method and results from traffic simulations. The problem formulation takes into account the impact of the devices on restoration times and costs due to fines related to service interruption reliability indices. Candidate solutions to the problem are evaluated using sequential Monte Carlo simulations, where travel times of maintenance crews are sampled according to data acquired from mobility traffic simulations. Results show the applicability of the approach in different simulation scenarios and the benefits of installing the devices in distribution networks. © 2022 Elsevier B.V.

2022

A Multi-Temporal Optimal Power Flow Model for Normal and Contingent Operation of Microgrids

Authors
Javadi, MS; Gouveia, CS; Carvalho, LM;

Publication
2022 IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING AND 2022 IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC / I&CPS EUROPE)

Abstract
In this paper, a multi-temporal optimal power flow (OPF) model for radial networks is proposed. The mathematical problem formulation is presented as a mixed-integer quadratically constrained programming (MIQCP) problem. The main core of the developed OPF problem is benefiting from the second-order conic programming (SOCP) approach while the quadratic constraints of the power flow equations have been efficiently handled. In the developed model, the dynamic behaviour of the electrical energy storage (EES) has been addressed for the day-ahead operation problem. In addition, the developed model is tested and verified for both normal and contingent events and the obtained results are satisfactory in terms of feasibility and optimality. In the islanded operation, a grid-forming unit is the main responsible for maintaining the voltage reference while other units behave as slave. The model is tested on the modified IEEE 33-bus network to verify the performance of the developed tool. © 2022 IEEE.

Supervised
thesis

2022

Resilience Enhancement Solutions for Distribution Networks

Author
Inês Maria Afonso Trigo de Freitas Alves

Institution
UP-FEUP

2022

Integrated Renewable Storage Systems Under Artificial Intelligence Decision Models

Author
Tiago João Amorim Abreu

Institution
UP-FEUP

2021

Integrated Renewable Storage Systems Under Artificial Intelligence Decision Models

Author
Tiago João Amorim Abreu

Institution
UP-FEUP

2021

CONGRATS – Convolutional Networks in GPU-based Reliability Assessment of Transmission Systems

Author
Rodrigo Gonçalves de Morais

Institution
UP-FEUP

2019

MOCAPIRA - Monte Carlo parallel implementation for reliability assessment

Author
Inês Maria Afonso Trigo de Freitas Alves

Institution
UP-FEUP