Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Interest
Topics
Details

Details

026
Publications

2020

Teaching robotics with a simulator environment developed for the autonomous driving competition

Authors
Fernandes, D; Pinheiro, F; Dias, A; Martins, A; Almeida, J; Silva, E;

Publication
Advances in Intelligent Systems and Computing

Abstract
Teaching robotics based on challenge of our daily lives is always more motivating for students and teachers. Several competitions of self-driving have emerged recently, challenging students and researchers to develop solutions addressing the autonomous driving systems. The Portuguese Festival Nacional de Robótica (FNR) Autonomous Driving Competition is one of those examples. Even though the competition is an exciting challenger, it requires the development of real robots, which implies several limitations that may discourage the students and compromise a fluid teaching process. The simulation can contribute to overcome this limitation and can assume an important role as a tool, providing an effortless and costless solution, allowing students and researchers to keep their focus on the main issues. This paper presents a simulation environment for FNR, providing an overall framework able to support the exploration of robotics topics like perception, navigation, data fusion and deep learning based on the autonomous driving competition. © Springer Nature Switzerland AG 2020.

2020

Real-time GNSS precise positioning: RTKLIB for ROS

Authors
Ferreira, A; Matias, B; Almeida, J; Silva, E;

Publication
International Journal of Advanced Robotic Systems

Abstract
The global navigation satellite system (GNSS) constitutes an effective and affordable solution to the outdoor positioning problem. When combined with precise positioning techniques, such as the real time kinematic (RTK), centimeter-level positioning accuracy becomes a reality. Such performance is suitable for a whole new range of demanding applications, including high-accuracy field robotics operations. The RTKRCV, part of the RTKLIB package, is one of the most popular open-source solutions for real-time GNSS precise positioning. Yet the lack of integration with the robot operating system (ROS), constitutes a limitation on its adoption by the robotics community. This article addresses this limitation, reporting a new implementation which brings the RTKRCV capabilities into ROS. New features, including ROS publishing and control over a ROS service, were introduced seamlessly, to ensure full compatibility with all original options. Additionally, a new observation synchronization scheme improves solution consistency, particularly relevant for the moving-baseline positioning mode. Real application examples are presented to demonstrate the advantages of our rtkrcv_ros package. For community benefit, the software was released as an open-source package.

2019

ISEP/INESC TEC Aerial Robotics Team for Search and Rescue Operations at the euRathlon 2015

Authors
Sousa, P; Ferreira, A; Moreira, M; Santos, T; Martins, A; Dias, A; Almeida, J; Silva, E;

Publication
Journal of Intelligent and Robotic Systems: Theory and Applications

Abstract
This paper presents the results from search and rescue missions performed with the aerial robot OTUS in the the context of the ISEP/INESC TEC aerial robotics team participation on the euRathlon 2015 robotics competition. The multi-domain (land, sea and air) search and rescue scenario is described and technical solution adopted is presented with emphasis on the perception system. The calibration of the image based system is addressed. Results from the operational missions performed are also discussed. The aerial autonomous vehicle was able to successfully perform multiple tasks from the aerial reconnaissance and 3D mapping to the identification of leaking pipes, obstructed passages and missing workers. The system was validated a realistic operational scenario and won the Grand Challenge in cooperation with land and marine robotics partner teams. This challenge was the first time that a real time collaborative team of aerial, land and marine robots was deployed successfully in a search and rescue mission. © 2018 Springer Science+Business Media B.V., part of Springer Nature

2019

LiDAR-Based Real-Time Detection and Modeling of Power Lines for Unmanned Aerial Vehicles

Authors
Azevedo, F; Dias, A; Almeida, J; Oliveira, A; Ferreira, A; Santos, T; Martins, A; Silva, E;

Publication
Sensors

Abstract
The effective monitoring and maintenance of power lines are becoming increasingly important due to a global growing dependence on electricity. The costs and risks associated with the traditional foot patrol and helicopter-based inspections can be reduced by using UAVs with the appropriate sensors. However, this implies developing algorithms to make the power line inspection process reliable and autonomous. In order to overcome the limitations of visual methods in the presence of poor light and noisy backgrounds, we propose to address the problem of power line detection and modeling based on LiDAR. The PL 2 DM, Power Line LiDAR-based Detection and Modeling, is a novel approach to detect power lines. Its basis is a scan-by-scan adaptive neighbor minimalist comparison for all the points in a point cloud. The power line final model is obtained by matching and grouping several line segments, using their collinearity properties. Horizontally, the power lines are modeled as a straight line, and vertically as a catenary curve. Using a real dataset, the algorithm showed promising results both in terms of outputs and processing time, adding real-time object-based perception capabilities for other layers of processing.

2019

3D UNDERWATER MINE MODELLING in the ¡vAMOS! PROJECT

Authors
Bleier, M; Almeida, C; Ferreira, A; Pereira, R; Matias, B; Almeida, J; Pidgeon, J; Van Der Lucht, J; Schilling, K; Martins, A; Silva, E; Nüchter, A;

Publication
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences

Abstract
The project Viable Alternative Mine Operating System (¡VAMOS!) develops a novel underwater mining technique for extracting inland mineral deposits in flooded open-cut mines. From a floating launch and recovery vessel a remotely-operated underwater mining vehicle with a roadheader cutting machine is deployed. The cut material is transported to the surface via a flexible riser hose. Since there is no direct intervisibility between the operator and the mining machine, the data of the sensor systems can only be perceived via a computer interface. Therefore, part of the efforts in the project focus on enhancing the situational awareness of the operator by providing a 3D model of the mine combined with representations of the mining equipment and sensor data. We present a method how a positioning and navigation system, perception system and mapping system can be used to create a replica of the physical system and mine environment in Virtual Reality (VR) in order to assist remote control. This approach is beneficial because it allows visualizing different sensor information and data in a consistent interface, and enables showing the complete context of the mining site even if only part of the mine is currently observed by surveying equipment. We demonstrate how the system is used during tele-operation and show results achieved during the field trials of the complete system in Silvermines, Ireland. © 2019 Copernicus GmbH. All righhts reserved.

Supervised
thesis

2018

Análise comparativa entre métodos de Northseeking para veículo de mineração subaquática

Author
CAIO TEIXEIRA LOMBA

Institution
IPP-ISEP

2018

Sistema de Perceção 3D Subaquático com Projetor Laser rotativo: Calibração e Reconstrução Tridimensional

Author
EDUARDO JOSÉ PINTO SOARES

Institution
IPP-ISEP

2018

Calibração dos parâmetros extrı́nsecos de um LiDAR num UAV

Author
ANDRÉ FILIPE MARTINS FERREIRA

Institution
IPP-ISEP

2018

Real-Time LiDAR-based Power Lines Detection for Unmanned Aerial Vehicles

Author
FÁBIO ANDRÉ COSTA AZEVEDO

Institution
IPP-ISEP

2017

Método visual de deteção de linhas elétricas para veículos aéreos não tripulados

Author
TIAGO ANDRÉ MIRANDA DOS SANTOS

Institution
IPP-ISEP