Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About
Download Photo HD

About

I was born in  Leiria, Portugal, in July, 1985. I graduated with a M.Sc. degree in Electrical Engineering from the University of Porto in 2009. Since then, I have been developing my research within the Robotic and Intelligent Systems Unit of INESC-Porto (the Institute for Systems and Computer Engineering of Porto). My main research area is navigation and control of indoor autonomous vehicles.

Interest
Topics
Details

Details

021
Publications

2022

Localization and Mapping on Agriculture Based on Point-Feature Extraction and Semiplanes Segmentation From 3D LiDAR Data

Authors
Aguiar, AS; dos Santos, FN; Sobreira, H; Boaventura Cunha, J; Sousa, AJ;

Publication
Frontiers in Robotics and AI

Abstract
Developing ground robots for agriculture is a demanding task. Robots should be capable of performing tasks like spraying, harvesting, or monitoring. However, the absence of structure in the agricultural scenes challenges the implementation of localization and mapping algorithms. Thus, the research and development of localization techniques are essential to boost agricultural robotics. To address this issue, we propose an algorithm called VineSLAM suitable for localization and mapping in agriculture. This approach uses both point- and semiplane-features extracted from 3D LiDAR data to map the environment and localize the robot using a novel Particle Filter that considers both feature modalities. The numeric stability of the algorithm was tested using simulated data. The proposed methodology proved to be suitable to localize a robot using only three orthogonal semiplanes. Moreover, the entire VineSLAM pipeline was compared against a state-of-the-art approach considering three real-world experiments in a woody-crop vineyard. Results show that our approach can localize the robot with precision even in long and symmetric vineyard corridors outperforming the state-of-the-art algorithm in this context.

2021

Particle filter refinement based on clustering procedures for high-dimensional localization and mapping systems

Authors
Aguiar, AS; dos Santos, FN; Sobreira, H; Cunha, JB; Sousa, AJ;

Publication
Robotics and Autonomous Systems

Abstract

2020

Autonomous Robot Navigation for Automotive Assembly Task: An Industry Use-Case

Authors
Sobreira, H; Rocha, L; Lima, J; Rodrigues, F; Moreira, AP; Veiga, G;

Publication
Advances in Intelligent Systems and Computing - Robot 2019: Fourth Iberian Robotics Conference

Abstract

2020

Development of an Autonomous Mobile Towing Vehicle for Logistic Tasks

Authors
Rocha, C; Sousa, I; Ferreira, F; Sobreira, H; Lima, J; Veiga, G; Moreira, AP;

Publication
Advances in Intelligent Systems and Computing - Robot 2019: Fourth Iberian Robotics Conference

Abstract

2020

Localization and Mapping for Robots in Agriculture and Forestry: A Survey

Authors
Aguiar, AS; dos Santos, FN; Cunha, JB; Sobreira, H; Sousa, AJ;

Publication
Robotics

Abstract
Research and development of autonomous mobile robotic solutions that can perform several active agricultural tasks (pruning, harvesting, mowing) have been growing. Robots are now used for a variety of tasks such as planting, harvesting, environmental monitoring, supply of water and nutrients, and others. To do so, robots need to be able to perform online localization and, if desired, mapping. The most used approach for localization in agricultural applications is based in standalone Global Navigation Satellite System-based systems. However, in many agricultural and forest environments, satellite signals are unavailable or inaccurate, which leads to the need of advanced solutions independent from these signals. Approaches like simultaneous localization and mapping and visual odometry are the most promising solutions to increase localization reliability and availability. This work leads to the main conclusion that, few methods can achieve simultaneously the desired goals of scalability, availability, and accuracy, due to the challenges imposed by these harsh environments. In the near future, novel contributions to this field are expected that will help one to achieve the desired goals, with the development of more advanced techniques, based on 3D localization, and semantic and topological mapping. In this context, this work proposes an analysis of the current state-of-the-art of localization and mapping approaches in agriculture and forest environments. Additionally, an overview about the available datasets to develop and test these approaches is performed. Finally, a critical analysis of this research field is done, with the characterization of the literature using a variety of metrics.

Supervised
thesis

2016

Sistema de navegação para plataforma móvel omnidirecional

Author
Fernando Jorge Marques de Sá

Institution
UP-FEUP

2016

Plataforma robótica genérica para robô de logística, serviços ou vigilância com mecanismo de troca automática da bateria

Author
Ivo Emanuel Milheiro de Sousa

Institution
UP-FEUP