Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    Héber Miguel Sobreira
  • Cargo

    Investigador Sénior
  • Desde

    08 dezembro 2010
028
Publicações

2025

Indoor Benchmark of 3-D LiDAR SLAM at Iilab-Industry and Innovation Laboratory

Autores
Ribeiro, JD; Sousa, RB; Martins, JG; Aguiar, AS; Santos, FN; Sobreira, HM;

Publicação
IEEE ACCESS

Abstract
This paper presents an indoor benchmarking study of state-of-the-art 3D LiDAR-based Simultaneous Localization and Mapping (SLAM) algorithms using the newly developed IILABS 3D - iilab Indoor LiDAR-based SLAM 3D dataset. Existing SLAM datasets often focus on outdoor environments, rely on a single type of LiDAR sensor, or lack additional sensor data such as wheel odometry in ground-based robotic platforms. Consequently, the existing datasets lack data diversity required to comprehensively evaluate performance under diverse indoor conditions. The IILABS 3D dataset fills this gap by providing a sensor-rich, indoor-exclusive dataset recorded in a controlled laboratory environment using a wheeled mobile robot platform. It includes four heterogeneous 3D LiDAR sensors - Velodyne VLP-16, Ouster OS1-64, RoboSense RS-Helios-5515, and Livox Mid-360 - featuring both mechanical spinning and non-repetitive scanning patterns, as well as an IMU and wheel odometry for sensor fusion. The dataset also contains calibration sequences, challenging benchmark trajectories, and high-precision ground-truth poses captured with a motion capture system. Using this dataset, we benchmark nine representative LiDAR-based SLAM algorithms across multiple sequences, analyzing their performance in terms of accuracy and consistency under varying sensor configurations. The results provide a comprehensive performance comparison and valuable insights into the strengths and limitations of current SLAM algorithms in indoor environments. The dataset, benchmark results, and related tools are publicly available at https://jorgedfr.github.io/3d_lidar_slam_benchmark_at_iilab/

2025

Exploring the Potential of LLM-based Chatbots for Task Scheduling in Robot Operations

Autores
Rema, C; Sousa, A; Sobreira, H; Costa, P; Silva, MF;

Publicação
2025 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS, ICARSC

Abstract
The rise of Industry 4.0 has revolutionized manufacturing by integrating real-time data analysis, artificial intelligence (AI), automation, and interconnected systems, enabling adaptive and resilient smart factories. Autonomous Mobile Robots (AMRs), with their advanced mobility and navigation capabilities, are a pillar of this transformation. However, their deployment in job shop environments adds complexity to the already challenging Job Shop Scheduling Problem (JSSP), expanding it to include task allocation, robot scheduling, and travel time optimization, creating a multi-faceted, non-deterministic polynomial-time hardness (NP-hard) problem. Traditional approaches such as heuristics, meta-heuristics, and mixed integer linear programming (MILP) are commonly used. Recent AI advancements, particularly large language models (LLM), have shown potential in addressing these scheduling challenges due to significant improvements in reasoning and decision-making from textual data. This paper examines the application of LLM to tackle scheduling complexities in smart job shops with mobile robots. Guided by tailored prompts inserted manually, LLM are employed to generate scheduling solutions, being these compared to an heuristic-based method. The results indicate that LLM currently have limitations in solving complex combinatorial problems, such as task scheduling with mobile robots. Due to issues with consistency and repeatability, they are not yet reliable enough for practical implementation in industrial environments. However, they offer a promising foundation for augmenting traditional approaches in the future.

2025

Enhancing Mobile Robot Navigation: A Graph Decomposition Submodule for TEA*

Autores
Cardoso, F; Matos, DM; Brilhante, M; Costa, P; Sobreira, E; Silva, C;

Publicação
2025 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS, ICARSC

Abstract
Rising industrial complexity demands efficient mobile robots to drive automation and productivity. Effective navigation relies on perception, localization, mapping, path planning, and motion control, with path planning being key. The Time Enhanced A* (TEA*) algorithm extends A* by adding time as a dimension to resolve temporal conflicts in multi-robot coordination. However, inconsistencies in edge lengths within the graph can hinder optimal path calculation. To address this, a Graph Decomposition submodule was developed to standardize edge lengths and temporal costs. Integrated into a ROS-based fleet coordination system, this approach significantly reduces execution time and improves coordination capacity.

2025

Parallel Path Planning for Multi-Robot Coordination

Autores
Ribeiro, J; Brilhante, M; Matos, DM; Silva, CA; Sobreira, H; Costa, P;

Publicação
2025 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS, ICARSC

Abstract
Multi-robot coordination aims to synchronize robots for optimized, collision-free paths in shared environments, addressing task allocation, collision avoidance, and path planning challenges. The Time Enhanced A* (TEA*) algorithm addresses multi-robot pathfinding offering a centralized and sequential approach. However, its sequential nature can lead to order-dependent variability in solutions. This study enhances TEA* through multi-threading, using thread pooling and parallelization techniques via OpenMP, and a sensitivity analysis enabling parallel exploration of robot-solving orders to improve robustness and the likelihood of finding efficient, feasible paths in complex environments. The results show that this approach improved coordination efficiency, reducing replanning needs and simulation time. Additionally, the sensitivity analysis assesses TEA*'s scalability across various graph sizes and number of robots, providing insights into how these factors influence the efficiency and performance of the algorithm.

2025

A Nonlinear Model Predictive Control Strategy for Trajectory Tracking of Omnidirectional Robots

Autores
Ribeiro, J; Sobreira, H; Moreira, A;

Publicação
Lecture Notes in Electrical Engineering

Abstract
This paper presents a novel Nonlinear Model Predictive Controller (NMPC) architecture for trajectory tracking of omnidirectional robots. The key innovation lies in the method of handling constraints on maximum velocity and acceleration outside of the optimization process, significantly reducing computation time. The controller uses a simplified process model to predict the robot’s state evolution, enabling real-time cost function minimization through gradient descent methods. The cost function penalizes position and orientation errors as well as control effort variation. Experimental results compare the performance of the proposed controller with a generic Proportional-Derivative (PD) controller and a NMPC with integrated optimization constraints. The findings reveal that the proposed controller achieves higher precision than the PD controller and similar precision to the NMPC with integrated constraints, but with substantially lower computational effort. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.