Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Tópicos
de interesse
Detalhes

Detalhes

022
Publicações

2022

Localization and Mapping on Agriculture Based on Point-Feature Extraction and Semiplanes Segmentation From 3D LiDAR Data

Autores
Aguiar, AS; dos Santos, FN; Sobreira, H; Boaventura Cunha, J; Sousa, AJ;

Publicação
FRONTIERS IN ROBOTICS AND AI

Abstract
Developing ground robots for agriculture is a demanding task. Robots should be capable of performing tasks like spraying, harvesting, or monitoring. However, the absence of structure in the agricultural scenes challenges the implementation of localization and mapping algorithms. Thus, the research and development of localization techniques are essential to boost agricultural robotics. To address this issue, we propose an algorithm called VineSLAM suitable for localization and mapping in agriculture. This approach uses both point- and semiplane-features extracted from 3D LiDAR data to map the environment and localize the robot using a novel Particle Filter that considers both feature modalities. The numeric stability of the algorithm was tested using simulated data. The proposed methodology proved to be suitable to localize a robot using only three orthogonal semiplanes. Moreover, the entire VineSLAM pipeline was compared against a state-of-the-art approach considering three real-world experiments in a woody-crop vineyard. Results show that our approach can localize the robot with precision even in long and symmetric vineyard corridors outperforming the state-of-the-art algorithm in this context.

2022

Collision Avoidance Considering Iterative Bezier Based Approach for Steep Slope Terrains

Autores
Santos, LC; Santos, FN; Valente, A; Sobreira, H; Sarmento, J; Petry, M;

Publicação
IEEE ACCESS

Abstract
The Agri-Food production requirements needs a more efficient and autonomous processes, and robotics will play a significant role in this process. Deploying agricultural robots on the farm is still a challenging task. Particularly in slope terrains, where it is crucial to avoid obstacles and dangerous steep slope zones. Path planning solutions may fail under several circumstances, as the appearance of a new obstacle. This work proposes a novel open-source solution called AgRobPP-CA to autonomously perform obstacle avoidance during robot navigation. AgRobPP-CA works in real-time for local obstacle avoidance, allowing small deviations, avoiding unexpected obstacles or dangerous steep slope zones, which could impose a fall of the robot. Our results demonstrated that AgRobPP-CA is capable of avoiding obstacles and high slopes in different vineyard scenarios, with low computation requirements. For example, in the last trial, AgRobPP-CA avoided a steep ramp that could impose a fall to the robot.

2022

FollowMe - A Pedestrian Following Algorithm for Agricultural Logistic Robots

Autores
Sarmento, J; Dos Santos, FN; Aguiar, AS; Sobreira, H; Regueiro, CV; Valente, A;

Publicação
2022 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS (ICARSC)

Abstract
In Industry 4.0 and Agriculture 4.0, there are logistics areas where robots can play an important role, for example by following a person at a certain distance. These robots can transport heavy tools or simply help collect certain items, such as harvested fruits. The use of Ultra Wide Band (UWB) transceivers as range sensors is becoming very common in the field of robotics, i.e. for localising goods and machines. Since UWB technology has very accurate time resolution, it is advantageous for techniques such as Time Of Arrival (TOA), which can estimate distance by measuring the time between message frames. In this work, UWB transceivers are used as range sensors to track pedestrians/operators. In this work we propose the use of two algorithms for relative localization, between a person and robot. Both algorithms use a similar 2dimensional occupancy grid, but differ in filtering. The first is based on a Extended Kalman Filter (EKF) that fuses the range sensor with odometry. The second is based on an Histogram Filter that calculates the pedestrian position by discretizing the state space in well-defined regions. Finally, a controller is implemented to autonomously command the robot. Both approaches are tested and compared on a real differential drive robot. Both proposed solutions are able to follow a pedestrian at speeds of 0.1m/s, and are promising solutions to complement other solutions based on cameras and LiDAR.

2021

Particle filter refinement based on clustering procedures for high-dimensional localization and mapping systems

Autores
Aguiar, AS; dos Santos, FN; Sobreira, H; Cunha, JB; Sousa, AJ;

Publicação
ROBOTICS AND AUTONOMOUS SYSTEMS

Abstract
Developing safe autonomous robotic applications for outdoor agricultural environments is a research field that still presents many challenges. Simultaneous Localization and Mapping can be crucial to endow the robot to localize itself with accuracy and, consequently, perform tasks such as crop monitoring and harvesting autonomously. In these environments, the robotic localization and mapping systems usually benefit from the high density of visual features. When using filter-based solutions to localize the robot, such an environment usually uses a high number of particles to perform accurately. These two facts can lead to computationally expensive localization algorithms that are intended to perform in real-time. This work proposes a refinement step to a standard high-dimensional filter based localization solution through the novelty of downsampling the filter using an online clustering algorithm and applying a scan-match procedure to each cluster. Thus, this approach allows scan matchers without high computational cost, even in high dimensional filters. Experiments using real data in an agricultural environment show that this approach improves the Particle Filter performance estimating the robot pose. Additionally, results show that this approach can build a precise 3D reconstruction of agricultural environments using visual scans, i.e., 3D scans with RGB information.

2020

Autonomous Robot Navigation for Automotive Assembly Task: An Industry Use-Case

Autores
Sobreira, H; Rocha, L; Lima, J; Rodrigues, F; Moreira, AP; Veiga, G;

Publicação
FOURTH IBERIAN ROBOTICS CONFERENCE: ADVANCES IN ROBOTICS, ROBOT 2019, VOL 1

Abstract
Automobile industry faces one of the most flexible productivity caused by the number of customized models variants due to the buyers needs. This fact requires the production system to introduce flexible, adaptable and cooperative with humans solutions. In the present work, a panel that should be mounted inside a van is addressed. For that purpose, a mobile manipulator is suggested that could share the same space with workers helping each other. This paper presents the navigation system for the robot that enters the van from the rear door after a ramp, operates and exits. The localization system is based on 3DOF methodologies that allow the robot to operate autonomously. Real tests scenarios prove the precision and repeatability of the navigation system outside, inside and during the ramp access of the van.

Teses
supervisionadas

2016

Sistema de navegação para plataforma móvel omnidirecional

Autor
Fernando Jorge Marques de Sá

Instituição
UP-FEUP

2016

Plataforma robótica genérica para robô de logística, serviços ou vigilância com mecanismo de troca automática da bateria

Autor
Ivo Emanuel Milheiro de Sousa

Instituição
UP-FEUP