Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About
Download Photo HD

About

I am a senior researcher with a degree in Electrical Engineering from University of Porto, Portugal (option of Digital and Computer Systems). Since 1996, I am responsible for Research and Technological Development projects in the Centre for Enterprise Systems Engineering (CESE) at INESC TE. Information Systems, Operations Management, Decision Support and Enterprise Collaborative Networks are my main areas of work. In this context, I have participated in national and European projects of applied research in close collaboration with other research institutions, technology centres, companies of the ICT sector and industrial companies from various sectors, among which stand out the textile, clothing and footwear sectors and the automotive industry. The following is a sample of European projects I was engaged with: AC/DC “Automotive Chassis Development for 5-Days-Cars”, eBiz-TCF “Harmonising e-Business processes and data exchanges for SMEs in the textile/clothing and footwear sectors in the Single Market”, STAMINA “Sustainable and reliable robotics for part handling in manufacturing automation”. Besides software-based prototypes, I published several articles in scientific journals, conference proceedings and book chapters.

Interest
Topics
Details

Details

025
Publications

2021

A new Simulation-Based Approach in the Design of Manufacturing Systems and Real-Time Decision

Authors
Santos, R; Toscano, C; de Sousa, JP;

Publication
IFAC PAPERSONLINE

Abstract
The principles and tools made available by the Industry 4.0, smart factories, or the Internet of Things (IoT), along with the adoption of more comprehensive simulation models, can significantly help the industry to face the current, huge external and internal challenges. This paper presents a new simulation-based approach to support decision making in the design and operational management of manufacturing systems. This approach is used to evaluate different layouts and resources allocation, and help managing operations, by integrating a simulation software with real-time data collected from the production assets through an IoT platform. The developed methodology uses a digital representation of the real production system (that may be viewed as a form of a digital twin) to assess different production scenarios. A set of key performance indicators (e.g. productivity) provided by the simulation can be used by the Manufacturing Execution System (MES) to generate production schedules. The developed approach was implemented and assessed in a real case study, showing its robustness and application potential. Its extension to other industrial contexts and sectors seems, therefore, quite promising. Copyright (C) 2021 The Authors.

2021

A Predictive Simulation and Optimization Architecture based on a Knowledge Engineering User Interface to Support Operator 4.0

Authors
Palasciano, C; Toscano, C; Arrais, R; Sobral, NM; Floreani, F; Sesana, M; Taisch, M;

Publication
IFAC PAPERSONLINE

Abstract
The Real-Time Monitoring and Performance Management suite tool, known as UIL (User Interface Layer), was developed in the FASTEN project, a R&D initiative financed by the innovation and research program H2020 within a bilateral Europe-Brazil call. UIL was conceived and deployed in the IIoT architecture of the project. The goal was to provide a usercentered assistance to the human operator for both decision-responsibility and control loop, in a continuously updating information fashion, related to system's state. In order to have experimental results, a qualitative assessment was conducted in an industrial environment. The architecture proposed was based on the adoption of a Knowledge Engineering User Interface to support Operator 4.0. Our empirical experiments point out to a successful set of results. Copyright (C) 2021 The Authors.

2019

Testing the vertical and cyber-physical integration of cognitive robots in manufacturing

Authors
Krueger, V; Rovida, F; Grossmann, B; Petrick, R; Crosby, M; Charzoule, A; Garcia, GM; Behnke, S; Toscano, C; Veiga, G;

Publication
Robotics and Computer-Integrated Manufacturing

Abstract

2018

Enhancement of Industrial Logistic Systems with Semantic 3D Representations for Mobile Manipulators

Authors
Toscano, C; Arrais, R; Veiga, G;

Publication
Advances in Intelligent Systems and Computing

Abstract
This paper proposes a logistic planner with supplementary 3D spatial representations to enhance and interact with traditional logistic systems on the context of mobile manipulators performing internal logistics operations. By defining a hierarchical structure, the logistic world model, as the central entity synchronized between multiple system components, the reliability and accuracy of the logistic system is strengthened. The proposed approach aims at implementing a robust and intuitive solution for the set-up of mobile manipulator based logistic systems. The logistic planner includes a web based interface for fast setup of the warehouse layout based on robot sensing, as well as the definition of missions for the fleet of robotic systems. © Springer International Publishing AG 2018.

2017

A mobile robot based sensing approach for assessing spatial inconsistencies of a logistic system

Authors
Arrais, R; Oliveira, M; Toscano, C; Veiga, G;

Publication
Journal of Manufacturing Systems

Abstract
This paper demonstrates the potential benefits of the integration of robot based sensing and Enterprise Information Systems extended with information about the geometric location and volumetric information of the parts contained in logistic supermarkets. The comparison of this extended world model with hierarchical spatial representations produced by a fleet of robots traversing the logistic supermarket corridors enables the continuous assessment of inconsistencies between reality, i.e., the spatial representations collected from online 3D data, and the modelled information, i.e., the world model. Results show that it is possible to detect inconsistencies reliably and in real time. The proposed approach contributes to the development of more robust and effective Enterprise Information Systems. © 2017 The Society of Manufacturing Engineers

Supervised
thesis

2015

Automatic inconsistency detection in a logistic world model (european project STAMINA)

Author
Rafael Lirio Arrais

Institution
UP-FEUP