Cookies Policy
We use cookies to improve our site and your experience. By continuing to browse our site you accept our cookie policy. Find out More
Close
  • Menu
About

About

I am a Senior Researcher at the center for Robotics and Autonomous Systems at INESC TEC. I graduated in Electrical and Computer Engineering from the Faculty of Engineering of the University of Porto, first with a MSc degree in 2009 and with a PhD degree in 2014. Since 2009, I have been working on Surface and Underwater Robotics, researching on Control, Guidance, Localization and Coordination of marine robots.

My activities have been developed in the context of several national and international projects, among which the following are highlighted: Lajeado (development of an AUV for dam inspection); FP7 ICARUS (Integrated Components for Assisted Rescue and Unmanned Search operations); and FLEXUS (Flexible Unmanned Surface vehicles for the Internet of moving things), funded by H2020 RAWFIE project.

I am also involved in the development of several robotic systems and at the origin of several prototypes such as the autonomous surface vehicle FLEXUS and the autonomous underwater vehicle SHAD.

Interest
Topics
Details

Details

001
Publications

2017

A lightweight docking station for a hovering AUV

Authors
Cruz, NA; Matos, AC; Almeida, RM; Ferreira, BM;

Publication
2017 IEEE OES International Symposium on Underwater Technology, UT 2017

Abstract
The concept of underwater docking stations has long been proposed to support the long term deployment of AUVs, but the number of successful solutions is still very disappointing. Hovering type AUVs can navigate arbitrarily slow, simplifying the docking maneuver and the requirements for the receiving structure. This paper describes a docking system that was developed to extend the mission duration of the MARES AUV, a man portable hovering type AUV. Given the wide range of operational scenarios and configurations of this AUV, one of the design requirements was to have a simple modular structure, that could easily be reconfigured to support different vehicle configurations, deployment scenarios and docking maneuvers. The paper provides details of the mechanical aspects, the onboard electronic subsystems, and the general operational procedure, as well as preliminary data from the first trials. © 2017 IEEE.

2017

Flexible unmanned surface vehicles enabling future internet experimentally-driven research

Authors
Ferreira, B; Coelho, A; Lopes, M; Matos, A; Goncalves, C; Kandasamy, S; Campos, R; Barbosa, J;

Publication
OCEANS 2017 - Aberdeen

Abstract

2017

STRONGMAR Summer School 2016 — Joining theory with a practical application in Underwater Archeology

Authors
Marques, MM; Salgado, A; Lobo, V; Carapau, RS; Rodrigues, AV; Carreras, M; Roca, J; Palomeras, N; Hurtos, N; Candela, C; Martins, A; Matos, A; Ferreira, B; Almeida, C; de Sa, FA; Almeida, JM; Silva, E;

Publication
OCEANS 2017 - Aberdeen

Abstract

2017

Unmanned Maritime Systems for Search and Rescue

Authors
Matos, A; Silva, E; Almeida, J; Martins, A; Ferreira, H; Ferreira, B; Alves, J; Dias, A; Fioravanti, S; Bertin, D; Lobo, V;

Publication
Search and Rescue Robotics - From Theory to Practice

Abstract

2016

Coordination of Marine Robots Under Tracking Errors and Communication Constraints

Authors
Ferreira, BM; Matos, AC; Cruz, NA; Moreira, AP;

Publication
IEEE JOURNAL OF OCEANIC ENGINEERING

Abstract
This paper presents the development and the experimental validation of a centralized coordination control scheme that is robust to communication constraints and individual tracking errors for a team of possibly heterogeneous marine vehicles. By assuming the existence of a lower level target tracking control layer, a centralized potential-field-based coordination scheme is proposed to drive a team of robots along a path that does not necessarily need to be defined a priori. Furthermore, the formation is allowed to hold its position (the vehicles hold their positions with regard to a static virtual leader), which is particularly appreciated in several marine applications. As it is important to guarantee stability and mission completion in adverse environments with limited communications, the centralized control scheme for coordination is constructed in a way that makes it robust to tracking errors and intermittent communication links. The study and developments presented in this paper are complemented with field experiments in which vehicles have coordinated their operation to keep in formation over a dynamic path and static points. This work considers two types of communication technologies. Firstly, standard high rate radio communications are used to drive the formation and, secondly, acoustic communications are employed to assess the performance and the robustness of the proposed approach to degraded and highly variable conditions. Index Terms-Communication

Supervised
thesis

2017

Rover submarino

Author
José Tiago Cardoso Meireles

Institution
UP-FEUP

2016

Projeto e desenvolvimento de um veículo submarino autónomo

Author
Carlos Filipe Silva Gonçalves

Institution
UP-FEUP