Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

2025

Parametric models for distributional data

Authors
Brito, P; Silva, APD;

Publication
ADVANCES IN DATA ANALYSIS AND CLASSIFICATION

Abstract
We present parametric probabilistic models for numerical distributional variables. The proposed models are based on the representation of each distribution by a location measure and inter-quantile ranges, for given quantiles, thereby characterizing the underlying empirical distributions in a flexible way. Multivariate Normal distributions are assumed for the whole set of indicators, considering alternative structures of the variance-covariance matrix. For all cases, maximum likelihood estimators of the corresponding parameters are derived. This modelling allows for hypothesis testing and multivariate parametric analysis. The proposed framework is applied to Analysis of Variance and parametric Discriminant Analysis of distributional data. A simulation study examines the performance of the proposed models in classification problems under different data conditions. Applications to Internet traffic data and Portuguese official data illustrate the relevance of the proposed approach.

2025

The role of civil society in promoting sustainable urban forests in Portugal

Authors
Almeida, F;

Publication
Arboricultural Journal

Abstract

2025

Technological Resources for Hemodialysis Patients: A Scoping Review

Authors
Martins, AR; Moreira, MT; Lima, A; Ferreira, S; Ferreira, MC; Fernandes, CS;

Publication
KIDNEY AND DIALYSIS

Abstract
Objective: This scoping review synthesized and mapped the breadth of the existing literature on technological resources used to support individuals undergoing hemodialysis treatment. Methods: Following the methodological guidelines of the Joanna Briggs Institute (JBI) for scoping reviews and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) checklist, comprehensive searches were conducted across the following databases: MEDLINE, Cumulative Index to Nursing and Allied Health Literature (CINAHL), PsycINFO, Scopus, Scientific Electronic Library Online (SciELO), MedicLatina, and the Cochrane Central Register of Controlled Trials, with no time restrictions. Results: Thirty-nine studies conducted between 2003 and 2023 met the inclusion criteria. These studies covered a range of technological innovations developed specifically for hemodialysis treatment, including virtual reality, exergames, websites, and mobile applications. These technologies were designed with diverse objectives: to facilitate physical exercise, optimize dietary and medication management, improve disease adherence and management, and promote self-efficacy and self-care in patients. Conclusions: The review revealed a wide range of technological resources available to hemodialysis patients. These digital solutions show great potential to transform care by promoting more engaged and personalized health practices. Although this study did not directly assess the impact of these technologies, it provides a solid foundation for future investigations that can explore in-depth how such innovations contribute to effective disease management and improvement in clinical outcomes.

2025

Maximizing PV Hosting Capacity in Unbalanced and Active Distribution Systems With EVs and Demand Response

Authors
Yumbla, J; Home-Ortiz, JM; Pinto, T; Mantovani, JRS;

Publication
IEEE ACCESS

Abstract
In this paper is presented a mixed-integer linear programming (MILP) model that maximizes the Photovoltaic-based (PV-based) hosting capacity (HC) in unbalanced and active distribution networks. The model takes into account the controlled charge of electric vehicles (EVs) and incorporates a demand-response program (DRP), for demand-side load shifting. The model's solution determines the optimal operation of distributed generators (DGs), switched capacitor banks (SCBs), energy storage devices (ESDs), coordination of the EVs charging, and DRP. Linear formulation is obtained from a mixed-integer non-linear programming (MINLP) model, ensuring tractability and guarantee convergence, since it can be efficiently solved using commercial optimization solvers of convex optimization. The model's effectiveness is demonstrated through tests on a 123-bus, three-phase unbalanced distribution system. Four case studies are conducted to assess the effect of different distributed energy resources (DERs). Results show that the simultaneous optimization of DERs, EVs charging and DR scheduling can significantly increase the PV-based HC -reaching up more than the substation capacity- while reducing total power losses. These findings demonstrate the technical potential of integrated DER coordination in enhancing PV penetration and improving the operational efficiency of active distribution systems.

2025

Converge: towards an efficient multi-modal sensing research infrastructure for next-generation 6 G networks

Authors
Teixeira, FB; Ricardo, M; Coelho, A; Oliveira, HP; Viana, P; Paulino, N; Fontes, H; Marques, P; Campos, R; Pessoa, L;

Publication
EURASIP Journal on Wireless Communications and Networking

Abstract

2025

End-to-End Occluded Person Re-Identification With Artificial Occlusion Generation

Authors
Capozzi, L; Cardoso, JS; Rebelo, A;

Publication
IEEE ACCESS

Abstract
In recent years, the task of person re-identification (Re-ID) has improved considerably with the advances in deep learning methodologies. However, occluded person Re-ID remains a challenging task, as parts of the body of the individual are frequently hidden by various objects, obstacles, or other people, making the identification process more difficult. To address these issues, we introduce a novel data augmentation strategy using artificial occlusions, consisting of random shapes and objects from a small image dataset that was created. We also propose an end-to-end methodology for occluded person Re-ID, which consists of three branches: a global branch, a feature dropping branch, and an occlusion detection branch. Experimental results show that the use of random shape occlusions is superior to random erasing using our architecture. Results on six datasets consisting of three tasks (holistic, partial and occluded person Re-ID) demonstrate that our method performs favourably against state-of-the-art methodologies.

  • 36
  • 4340