2025
Autores
Alves, GA; Tavares, R; Amorim, P; Camargo, VCB;
Publicação
COMPUTERS & INDUSTRIAL ENGINEERING
Abstract
The textile industry is a complex and dynamic system where structured decision-making processes are essential for efficient supply chain management. In this context, mathematical programming models offer a powerful tool for modeling and optimizing the textile supply chain. This systematic review explores the application of mathematical programming models, including linear programming, nonlinear programming, stochastic programming, robust optimization, fuzzy programming, and multi-objective programming, in optimizing the textile supply chain. The review categorizes and analyzes 163 studies across the textile manufacturing stages, from fiber production to integrated supply chains. Key results reveal the utility of these models in solving a wide range of decision-making problems, such as blending fibers, production planning, scheduling orders, cutting patterns, transportation optimization, network design, and supplier selection, considering the challenges found in the textile sector. Analyzing those models, we point out that sustainability considerations, such as environmental and social aspects, remain underexplored and present significant opportunities for future research. In addition, this study emphasizes the importance of incorporating multi-objective approaches and addressing uncertainties in decision-making to advance sustainable and efficient textile supply chain management.
2025
Autores
Pinto, JR; Cardoso, S;
Publicação
Encyclopedia of Cryptography, Security and Privacy, Third Edition
Abstract
[No abstract available]
2025
Autores
Moço, H; Sousa, C; Ferreira, R; Pinto, P; Pereira, C; Diogo, R;
Publicação
INNOVATIVE INTELLIGENT INDUSTRIAL PRODUCTION AND LOGISTICS, IN4PL 2024, PT II
Abstract
Since supply chains have become complex and tracking a product's journey, from raw materials to the end of it's life has become more difficult. Consumers are demanding greater transparency about the materials origins and environmental impact of the products they buy. These new requirements, togeher with European Commission Green Deal strategy, lead to the concept of digital product passport (DPP). DPP could be seen as an instrument to boost circularity, however the DPP architecture and governance model still undefined and unclear. Data Governance in the context of the DPP acts as the backbone for ensuring accurate and reliable data within these passports or data models, leading to flawless traceability. This article approaches the DPPs and it's governance challenges, explaining how they function as digital repositories for a product's life cycle information and the concept of Data Governance. By understanding how these two concepts work together, we will explore a short use case within the footwear industry to show how DPP governance architecture might work in a distributed environment.
2025
Autores
Oliveira Coelho, BF; Cardoso, JS;
Publicação
Neurocomputing
Abstract
In order to facilitate the adoption of deep learning in areas where decisions are of critical importance, understanding the model's internal workings is paramount. Nevertheless, since most models are considered black boxes, this task is usually not trivial, especially when the user does not have access to the network's intermediate outputs. In this paper, we propose IBISA, a model-agnostic attribution method that reaches state-of-the-art performance by optimizing sampling masks using the Information Bottleneck Principle. Our method improves on the previously known RISE and IBA techniques by placing the bottleneck right after the image input without complex formulations to estimate the mutual information. The method also requires only twenty forward passes and ten backward passes through the network, which is significantly faster than RISE, which needs at least 4000 forward passes. We evaluated IBISA using a VGG-16 and a ResNET-50 model, showing that our method produces explanations comparable or superior to IBA, RISE, and Grad-CAM but much more efficiently. © 2025 The Authors
2025
Autores
Karácsony, T; Fearns, N; Birk, D; Trapp, SD; Ernst, K; Vollmar, C; Rémi, J; Jeni, LA; De la Torre, F; Cunha, JPS;
Publicação
EXPERT SYSTEMS WITH APPLICATIONS
Abstract
Epileptic seizure classification based on seizure semiology requires automated, quantitative approaches to support the diagnosis of epilepsy, which affects 1 % of the world's population. Current approaches address the problem on a seizure level, neglecting the detailed evaluation of the classification of the underlying action features, also known as Movements of Interest (MOIs), which are critical for epileptologists in determining their classifications. Moreover, it hinders objective comparison of these approaches and attribution of performance differences due to datasets, intra-dataset MOI distribution, or architecture variations. Objective evaluation of action recognition techniques is crucial, with MOIs serving as foundational elements of semiology for clinical in-bed applications to facilitate epileptic seizure classification. However, until now, there were no MOI datasets available nor benchmarks comparing different action recognition approaches for this clinical problem. Therefore, as a pilot, we introduced a novel, simulated seizure semiology dataset carried out by 8 experienced epileptologists in an EMU bed, consisting of 7 MOI classes. We compare several computer vision methods for MOI classification, two image-based (I3D and Uniformerv2), and two skeleton-based (ST-GCN++ and PoseC3D) action recognition approaches. This study emphasizes the advantages of a 2-stage skeleton-based action recognition approach in a transfer learning setting (4 classes) and the multi-scale challenge of MOI classification (7 classes), advocating for the integration of skeleton-based methods with hand gesture recognition technologies in the future. The study's controlled MOI simulation dataset provides us with the opportunity to advance the development of automated epileptic seizure classification systems, paving the way for enhancing their performance and having the potential to contribute to improved patient care.
2025
Autores
Capela, D; Lopes, T; Dias, F; Ferreira, MFS; Teixeira, J; Lima, A; Jorge, PAS; Silva, NA; Guimaraes, D;
Publicação
SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY
Abstract
Mineral identification is a challenging task in geological sciences, which often implies multiple analyses of the physical and chemical properties of the samples for an accurate result. This task is particularly critical for the mining industry, where proper and fast mineral identification may translate into major efficiency and performance gains, such as in the case of the lithium mining industry. In this study, a mineral identification algorithm optimized for analyzing lithium-bearing samples using Laser-induced breakdown spectroscopy (LIBS) imaging, is put to the test with a set of representative samples. The algorithm incorporates advanced spectral processing techniques-baseline removal, Gaussian filtering, and data normalization-alongside unsupervised clustering to generate interpretable classification maps and auxiliary charts. These enhancements facilitate rapid and precise labelling of mineral compositions, significantly improving the interpretability and interactivity of the user interface. Extensive testing on diverse mineral samples with varying complexities confirmed the algorithm's robustness and broad applicability. Challenges related to sample granulometry and LIBS resolution were identified, suggesting future directions for optimizing system resolution to enhance classification accuracy in complex mineral matrices. The integration of this advanced algorithm with LIBS technology holds the potential to accelerate the mineral evaluation, paving the way for more efficient and sustainable mineral exploration.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.