Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Interest
Topics
Details

Details

  • Nationality

    Portugal
  • Centre

    Applied Photonics
  • Contacts

    +351220402301
    rui.c.martins@inesctec.pt
013
Publications

2021

Grape Bunch Detection at Different Growth Stages Using Deep Learning Quantized Models

Authors
Aguiar, AS; Magalhaes, SA; dos Santos, FN; Castro, L; Pinho, T; Valente, J; Martins, R; Boaventura Cunha, J;

Publication
Agronomy

Abstract
The agricultural sector plays a fundamental role in our society, where it is increasingly important to automate processes, which can generate beneficial impacts in the productivity and quality of products. Perception and computer vision approaches can be fundamental in the implementation of robotics in agriculture. In particular, deep learning can be used for image classification or object detection, endowing machines with the capability to perform operations in the agriculture context. In this work, deep learning was used for the detection of grape bunches in vineyards considering different growth stages: the early stage just after the bloom and the medium stage where the grape bunches present an intermediate development. Two state-of-the-art single-shot multibox models were trained, quantized, and deployed in a low-cost and low-power hardware device, a Tensor Processing Unit. The training input was a novel and publicly available dataset proposed in this work. This dataset contains 1929 images and respective annotations of grape bunches at two different growth stages, captured by different cameras in several illumination conditions. The models were benchmarked and characterized considering the variation of two different parameters: the confidence score and the intersection over union threshold. The results showed that the deployed models could detect grape bunches in images with a medium average precision up to 66.96%. Since this approach uses low resources, a low-cost and low-power hardware device that requires simplified models with 8 bit quantization, the obtained performance was satisfactory. Experiments also demonstrated that the models performed better in identifying grape bunches at the medium growth stage, in comparison with grape bunches present in the vineyard after the bloom, since the second class represents smaller grape bunches, with a color and texture more similar to the surrounding foliage, which complicates their detection.

2021

Synthesis of Catechol Derived Rosamine Dyes and Their Reactivity toward Biogenic Amines

Authors
Monteiro Silva, F; Queiros, C; Leite, A; Rodriguez, MT; Rojo, MJ; Torroba, T; Martins, RC; Silva, AMG; Rangel, M;

Publication
MOLECULES

Abstract
Functional organic dyes play a key role in many fields, namely in biotechnology and medical diagnosis. Herein, we report two novel 2,3- and 3,4-dihydroxyphenyl substituted rosamines (3 and 4, respectively) that were successfully synthesized through a microwave-assisted protocol. The best reaction yields were obtained for rosamine 4, which also showed the most interesting photophysical properties, specially toward biogenic amines (BAs). Several amines including n- and t-butylamine, cadaverine, and putrescine cause spectral changes of 4, in UV-Vis and fluorescence spectra, which are indicative of their potential application as an effective tool to detect amines in acetonitrile solutions. In the gas phase, the probe response is more expressive for spermine and putrescine. Additionally, we found that methanolic solutions of rosamine 4 and n-butylamine undergo a pink to yellow color change over time, which has been attributed to the formation of a new compound. The latter was isolated and identified as 5 (9-aminopyronin), whose solutions exhibit a remarkable increase in fluorescence intensity together with a shift toward more energetic wavelengths. Other 9-aminopyronins 6a, 6b, 7a, and 7b were obtained from methanolic solutions of 4 with putrescine and cadaverine, demonstrating the potential of this new xanthene entity to react with primary amines.

2021

X-ray Fluorescence and Laser-Induced Breakdown Spectroscopy Analysis of Li-Rich Minerals in Veins from Argemela Tin Mine, Central Portugal

Authors
Ribeiro, R; Capela, D; Ferreira, M; Martins, R; Jorge, P; Guimaraes, D; Lima, A;

Publication
Minerals

Abstract
In this work, X-ray fluorescence (XRF) and Laser-induced breakdown spectroscopy (LIBS) analyses were applied to samples of quartz, montebrasite, and turquoise hydrothermal veins in the Argemela Tin Mine (Central Portugal). Montebrasite (LiAl(PO4)(OH,F)) is potentially the main ore mineral; with its alteration, lithium (Li) can disseminate into other minerals. A hand sample was cut and analyzed by XRF and LIBS for several elements of interest including Cu, P, Al, Si, and Li. Although XRF cannot measure Li, results from its analysis are effective for distinguishing turquoise from montebrasite. LIBS analysis complemented this study, making it possible to conclude that turquoise does not contain any significant Li in its structure. The difference in spot size between the techniques (5 mm vs. 300 µm for XRF and LIBS, respectively) resulted in a poorer performance by XRF in accurately identifying mixed minerals. A thin section was petrographically characterized and mapped using LIBS. The mapping results demonstrate the possibility of the successful identification of minerals and their alterations on a thin section. The results of XRF analysis and LIBS mapping in petrographic sections demonstrate the efficacy of these methods as tools for element and mineral identification, which can be important in exploration and mining phases, complementing more traditional techniques.

2019

Path Planning Algorithms Benchmarking for Grapevines Pruning and Monitoring

Authors
Magalhães, SA; dos Santos, FN; Martins, RC; Rocha, LF; Brito, J;

Publication
Progress in Artificial Intelligence - Lecture Notes in Computer Science

Abstract

2019

Optical Sensing of Nitrogen, Phosphorus and Potassium: A Spectrophotometrical Approach Toward Smart Nutrient Deployment

Authors
Monteiro Silva, F; Jorge, PAS; Martins, RC;

Publication
Chemosensors

Abstract
The feasibility of a compact, modular sensing system able to quantify the presence of nitrogen, phosphorus and potassium (NPK) in nutrient-containing fertilizer water was investigated. Direct UV-Vis spectroscopy combined with optical fibers were employed to design modular compact sensing systems able to record absorption spectra of nutrient solutions resulting from local producer samples. N, P, and K spectral interference was studied by mixtures of commercial fertilizer solutions to simulate real conditions in hydroponic productions. This study demonstrates that the use of bands for the quantification of nitrogen with linear or logarithmic regression models does not produce analytical grade calibrations. Furthermore, multivariate regression models, i.e., Partial Least Squares (PLS), which consider specimens interference, perform poorly for low absorbance nutrients. The high interference present in the spectra has proven to be solved by an innovative self-learning artificial intelligence algorithm that is able to find interference modes among a spectral database to produce consistent predictions. By correctly modeling the existing interferences, analytical grade quantification of N, P, and K has proven feasible. The results of this work open the possibility of real-time NPK monitoring in Micro-Irrigation Systems.

Supervised
thesis

2021

Fiber Laser Plasma Spectroscopy for Real-Time

Author
Miguel Fernandes Soares Ferreira

Institution
UP-FCUP

2020

Metodologias e Tecnologias para a previsão dinâmica da qualidade dafruta -do campo ao prato

Author
Ana Patrícia Ferreira Vicente da Silva

Institution
UP-FCUP

2020

Fiber Laser Plasma Spectroscopy for Real-Time

Author
Miguel Fernandes Soares Ferreira

Institution
UP-FCUP

2019

Fiber Laser Plasma Spectroscopy for Real-Time

Author
Miguel Fernandes Soares Ferreira

Institution
UP-FCUP