Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Interest
Topics
Details

Details

  • Nationality

    Portugal
  • Centre

    Applied Photonics
  • Contacts

    +351220402301
    rui.c.martins@inesctec.pt
012
Publications

2022

Effects of Pulse Duration in Laser-induced Breakdown Spectroscopy

Authors
Ferreira, MFS; Silva, NA; Guimarães, D; Martins, RC; Jorge, PAS;

Publication
U.Porto Journal of Engineering

Abstract
Laser-induced breakdown spectroscopy (LIBS) is a technique that leverages atomic emission towards element identification and quantification. While the potential of the technology is vast, it still struggles with obstacles such as the variability of the technique. In recent years, several methods have exploited modifications to the standard implementation to work around this problem, mostly focused on the laser side to increase the signal-to-noise ratio of the emission. In this paper, we explore the effect of pulse duration on the detected signal intensity using a tunable LIBS system that consists of a versatile fiber laser, capable of emitting square-shaped pulses with a duration ranging from 10 to 100 ns. Our results show that, by tuning the duration of the pulse, it is possible to increase the signal-to-noise ratio of relevant elemental emission lines, an effect that we relate with the computed plasma temperature and associated density for the ion species. Despite the limitations of the work due to the low-resolution and small range of the spectrometer used, the preliminary results pave an interesting path towards the design of controllable LIBS systems that can be tailored to increase the signal-to-noise ratio and thus be useful for the deployment of more sensitive instruments both for qualitative and quantitative purposes.

2022

Canopy VIS-NIR spectroscopy and self-learning artificial intelligence for a generalised model of predawn leaf water potential in Vitis vinifera

Authors
Tosin, R; Martins, R; Pocas, I; Cunha, M;

Publication
BIOSYSTEMS ENGINEERING

Abstract
This paper focuses on predicting predawn leaf water potential through a self-learning artificial intelligence (SL-AI) algorithm, a novel spectral processing algorithm that is based on the search for covariance modes, providing a direct relationship between spectral information and plant constituents. The SL-AI algorithm was applied in a dataset containing 847 observations obtained with a handheld hyperspectral spectroradiometer (400–1010 nm), structured as: three grapevine cultivars (Touriga Nacional, Touriga Franca and Tinta Barroca), collected in three years (2014, 2015 and 2017), in two test sites in the renowned Douro Wine Region, northeast of Portugal. The ?pd SL-AI quantification was tested both in regressive (R2 = 0.97, MAPE = 18.30%) and classification (three classes; overall accuracy = 86.27%) approaches, where the radiation absorption spectrum zones of the chlorophylls, xanthophyll and water were identified along the vegetative growth cycle. The dataset was also tested with Artificial Neural Networks with Principal Component Analysis (ANN-PCA) and Partial Least Square (PLS), which presented worse performance when compared to SL-AI in the regressive (ANN-PCA - R2 = 0.85, MAPE = 43.64%; PLS - R2 = 0.94, MAPE = 28.76%) and classification (ANN-PCA - overall accuracy: 72.37%; PLS - overall accuracy: 73.79%) approaches. The ?pd modelled with SL-AI demonstrated, through hyperspectral reflectance, a cause-effect of the grapevine's hydric status with the absorbance of bands related to chlorophyll, xanthophylls and water. This cause-effect interaction could be explored to identify cultivars and cultural practices, hydric, heating and lighting stresses. © 2022 IAgrE

2022

Kiwi Plant Canker Diagnosis Using Hyperspectral Signal Processing and Machine Learning: Detecting Symptoms Caused by Pseudomonas syringae pv. actinidiae

Authors
Reis Pereira, M; Tosin, R; Martins, R; dos Santos, FN; Tavares, F; Cunha, M;

Publication
PLANTS-BASEL

Abstract
Pseudomonas syringae pv. actinidiae (Psa) has been responsible for numerous epidemics of bacterial canker of kiwi (BCK), resulting in high losses in kiwi production worldwide. Current diagnostic approaches for this disease usually depend on visible signs of the infection (disease symptoms) to be present. Since these symptoms frequently manifest themselves in the middle to late stages of the infection process, the effectiveness of phytosanitary measures can be compromised. Hyperspectral spectroscopy has the potential to be an effective, non-invasive, rapid, cost-effective, high-throughput approach for improving BCK diagnostics. This study aimed to investigate the potential of hyperspectral UV-VIS reflectance for in-situ, non-destructive discrimination of bacterial canker on kiwi leaves. Spectral reflectance (325-1075 nm) of twenty plants were obtained with a handheld spectroradiometer in two commercial kiwi orchards located in Portugal, for 15 weeks, totaling 504 spectral measurements. Several modeling approaches based on continuous hyperspectral data or specific wavelengths, chosen by different feature selection algorithms, were tested to discriminate BCK on leaves. Spectral separability of asymptomatic and symptomatic leaves was observed in all multi-variate and machine learning models, including the FDA, GLM, PLS, and SVM methods. The combination of a stepwise forward variable selection approach using a support vector machine algorithm with a radial kernel and class weights was selected as the final model. Its overall accuracy was 85%, with a 0.70 kappa score and 0.84 F-measure. These results were coherent with leaves classified as asymptomatic or symptomatic by visual inspection. Overall, the findings herein reported support the implementation of spectral point measurements acquired in situ for crop disease diagnosis.

2022

Point-of-Care Using Vis-NIR Spectroscopy for White Blood Cell Count Analysis

Authors
Barroso, TG; Ribeiro, L; Gregorio, H; Monteiro Silva, F; dos Santos, FN; Martins, RC;

Publication
CHEMOSENSORS

Abstract
Total white blood cells count is an important diagnostic parameter in both human and veterinary medicines. State-of-the-art is performed by flow cytometry combined with light scattering or impedance measurements. Spectroscopy point-of-care has the advantages of miniaturization, low sampling, and real-time hemogram analysis. While white blood cells are in low proportions, while red blood cells and bilirubin dominate spectral information, complicating detection in blood. We performed a feasibility study for the direct detection of white blood cells counts in canine blood by visible-near infrared spectroscopy for veterinary applications, benchmarking current chemometrics techniques (similarity, global and local partial least squares, artificial neural networks and least-squares support vector machines) with self-learning artificial intelligence, introducing data augmentation to overcome the hurdle of knowledge representativity. White blood cells count information is present in the recorded spectra, allowing significant discrimination and equivalence between hemogram and spectra principal component scores. Chemometrics methods correlate white blood cells count to spectral features but with lower accuracy. Self-Learning Artificial Intelligence has the highest correlation (0.8478) and a small standard error of 6.92 × 109 cells/L, corresponding to a mean absolute percentage error of 25.37%. Such allows the accurate diagnosis of white blood cells in the range of values of the reference interval (5.6 to 17.8 × 109 cells/L) and above. This research is an important step toward the existence of a miniaturized spectral point-of-care hemogram analyzer.

2021

Grape Bunch Detection at Different Growth Stages Using Deep Learning Quantized Models

Authors
Aguiar, AS; Magalhaes, SA; dos Santos, FN; Castro, L; Pinho, T; Valente, J; Martins, R; Boaventura Cunha, J;

Publication
AGRONOMY-BASEL

Abstract
The agricultural sector plays a fundamental role in our society, where it is increasingly important to automate processes, which can generate beneficial impacts in the productivity and quality of products. Perception and computer vision approaches can be fundamental in the implementation of robotics in agriculture. In particular, deep learning can be used for image classification or object detection, endowing machines with the capability to perform operations in the agriculture context. In this work, deep learning was used for the detection of grape bunches in vineyards considering different growth stages: the early stage just after the bloom and the medium stage where the grape bunches present an intermediate development. Two state-of-the-art single-shot multibox models were trained, quantized, and deployed in a low-cost and low-power hardware device, a Tensor Processing Unit. The training input was a novel and publicly available dataset proposed in this work. This dataset contains 1929 images and respective annotations of grape bunches at two different growth stages, captured by different cameras in several illumination conditions. The models were benchmarked and characterized considering the variation of two different parameters: the confidence score and the intersection over union threshold. The results showed that the deployed models could detect grape bunches in images with a medium average precision up to 66.96%. Since this approach uses low resources, a low-cost and low-power hardware device that requires simplified models with 8 bit quantization, the obtained performance was satisfactory. Experiments also demonstrated that the models performed better in identifying grape bunches at the medium growth stage, in comparison with grape bunches present in the vineyard after the bloom, since the second class represents smaller grape bunches, with a color and texture more similar to the surrounding foliage, which complicates their detection.

Supervised
thesis

2021

Fiber Laser Plasma Spectroscopy for Real-Time

Author
Miguel Fernandes Soares Ferreira

Institution
UP-FCUP

2020

Fiber Laser Plasma Spectroscopy for Real-Time

Author
Miguel Fernandes Soares Ferreira

Institution
UP-FCUP

2020

Metodologias e Tecnologias para a previsão dinâmica da qualidade dafruta -do campo ao prato

Author
Ana Patrícia Ferreira Vicente da Silva

Institution
UP-FCUP

2019

Fiber Laser Plasma Spectroscopy for Real-Time

Author
Miguel Fernandes Soares Ferreira

Institution
UP-FCUP