Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About
Download Photo HD

About

I graduated in Applied Physics (Optics and Lasers) at the University of Minho (1996), obtained the MSc in Optoelectronics and Lasers at the Physics Department of the University of Porto (2000); in 2006 I concluded a PhD program at Porto University in collaboration with the Department of Physics and Optical Sciences at the University of North Carolina at Charlotte, NC, USA, with work in luminescence based optical fibre systems for biochemical sensing applications using quantum dots. Since 1997 I have been involved in several research and technology transfer projects related to optical fibre sensing technology, developing new sensing configurations and interrogation techniques for optical sensors. I am, since 2007 a Senior researcher at INESC TEC reponsible for the Biochemical Sensors team, where we explore the potential of optical fibre and integrated optics technologies in environmental and medical applications framed by several R&D projects. I have more than 200 publications in the fields of sensors in national and international conferences and peer reviewed journals, I am author of 3 book chapters and also hold one patent. I am a member of SPIE and SPOF.

Interest
Topics
Details

Details

  • Nationality

    Portugal
  • Centre

    Applied Photonics
  • Contacts

    +351220402301
    pedro.jorge@inesctec.pt
032
Publications

2022

Unscrambling spectral interference and matrix effects in Vitis vinifera Vis-NIR spectroscopy: Towards analytical grade ‘in vivo’ sugars and acids quantification

Authors
Martins, RC; Barroso, TG; Jorge, P; Cunha, M; Santos, F;

Publication
COMPUTERS AND ELECTRONICS IN AGRICULTURE

Abstract

2022

A Plasmonic Biosensor Based on Light-Diffusing Fibers Functionalized with Molecularly Imprinted Nanoparticles for Ultralow Sensing of Proteins

Authors
Arcadio, F; Seggio, M; Del Prete, D; Buonanno, G; Mendes, J; Coelho, LCC; Jorge, PAS; Zeni, L; Bossi, AM; Cennamo, N;

Publication
NANOMATERIALS

Abstract
Plasmonic bio/chemical sensing based on optical fibers combined with molecularly imprinted nanoparticles (nanoMIPs), which are polymeric receptors prepared by a template-assisted synthesis, has been demonstrated as a powerful method to attain ultra-low detection limits, particularly when exploiting soft nanoMIPs, which are known to deform upon analyte binding. This work presents the development of a surface plasmon resonance (SPR) sensor in silica light-diffusing fibers (LDFs) functionalized with a specific nanoMIP receptor, entailed for the recognition of the protein human serum transferrin (HTR). Despite their great versatility, to date only SPR-LFDs functionalized with antibodies have been reported. Here, the innovative combination of an SPR-LFD platform and nanoMIPs led to the development of a sensor with an ultra-low limit of detection (LOD), equal to about 4 fM, and selective for its target analyte HTR. It is worth noting that the SPR-LDF-nanoMIP sensor was mounted within a specially designed 3D-printed holder yielding a measurement cell suitable for a rapid and reliable setup, and easy for the scaling up of the measurements. Moreover, the fabrication process to realize the SPR platform is minimal, requiring only a metal deposition step.

2022

Effects of Pulse Duration in Laser-induced Breakdown Spectroscopy

Authors
Ferreira, MFS; Silva, NA; Guimarães, D; Martins, RC; Jorge, PAS;

Publication
U.Porto Journal of Engineering

Abstract
Laser-induced breakdown spectroscopy (LIBS) is a technique that leverages atomic emission towards element identification and quantification. While the potential of the technology is vast, it still struggles with obstacles such as the variability of the technique. In recent years, several methods have exploited modifications to the standard implementation to work around this problem, mostly focused on the laser side to increase the signal-to-noise ratio of the emission. In this paper, we explore the effect of pulse duration on the detected signal intensity using a tunable LIBS system that consists of a versatile fiber laser, capable of emitting square-shaped pulses with a duration ranging from 10 to 100 ns. Our results show that, by tuning the duration of the pulse, it is possible to increase the signal-to-noise ratio of relevant elemental emission lines, an effect that we relate with the computed plasma temperature and associated density for the ion species. Despite the limitations of the work due to the low-resolution and small range of the spectrometer used, the preliminary results pave an interesting path towards the design of controllable LIBS systems that can be tailored to increase the signal-to-noise ratio and thus be useful for the deployment of more sensitive instruments both for qualitative and quantitative purposes.

2022

Towards robust calibration models for laser-induced breakdown spectroscopy using unsupervised clustered regression techniques

Authors
Silva N.A.; Capela D.; Ferreira M.; Gonçalves F.; Lima A.; Guimarães D.; Jorge P.A.S.;

Publication
Results in Optics

Abstract

2022

Differential Refractometric Biosensor for Reliable Human IgG Detection: Proof of Concept

Authors
Mendes, JP; Coelho, LCC; Jorge, PAS; Pereira, CM;

Publication
BIOSENSORS-BASEL

Abstract
A new sensing platform based on long-period fiber gratings (LPFGs) for direct, fast, and selective detection of human immunoglobulin G (IgG; Mw = 150 KDa) was developed and characterized. The transducer's high selectivity is based on the specific interaction of a molecularly imprinted polymer (MIPs) design for IgG detection. The sensing scheme is based on differential refractometric measurements, including a correction system based on a non-imprinted polymer (NIP)-coated LPFG, allowing reliable and more sensitive measurements, improving the rejection of false positives in around 30%. The molecular imprinted binding sites were performed on the surface of a LPFG with a sensitivity of about 130 nm/RIU and a FOM of 16 RIU-1. The low-cost and easy to build device was tested in a working range from 1 to 100 nmol/L, revealing a limit of detection (LOD) and a sensitivity of 0.25 nmol/L (0.037 mu g/mL) and 0.057 nm.L/nmol, respectively. The sensor also successfully differentiates the target analyte from the other abundant elements that are present in the human blood plasma.

Supervised
thesis

2020

Fast prototyping of advanced sensing devices using three-dimensional direct writing with femtosecond laser

Author
Vítor Alexandre Oliveira Amorim

Institution
UP-FCUP

2020

Development of differential optrodes for highly sensitive and reliable chemical sensing

Author
João Pedro Sampaio Mendes

Institution
UP-FCUP

2020

Fiber Laser Plasma Spectroscopy for Real-Time

Author
Miguel Fernandes Soares Ferreira

Institution
UP-FCUP

2020

Fabrication of opticals Ensing devices by 3D laser  micromachining

Author
Carlos Duarte Rodrigues Viveiros

Institution
UP-FCUP

2020

Optimization of LaserInduced Breakdown Spectroscopy (LIBS) for application in the cork industry

Author
Hugo Azevedo Veloso

Institution
UP-FCUP