Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About
Download Photo HD

About

I graduated in Applied Physics (Optics and Lasers) at the University of Minho (1996), obtained the MSc in Optoelectronics and Lasers at the Physics Department of the University of Porto (2000); in 2006 I concluded a PhD program at Porto University in collaboration with the Department of Physics and Optical Sciences at the University of North Carolina at Charlotte, NC, USA, with work in luminescence based optical fibre systems for biochemical sensing applications using quantum dots. Since 1997 I have been involved in several research and technology transfer projects related to optical fibre sensing technology, developing new sensing configurations and interrogation techniques for optical sensors. I am, since 2007 a Senior researcher at INESC TEC reponsible for the Biochemical Sensors team, where we explore the potential of optical fibre and integrated optics technologies in environmental and medical applications framed by several R&D projects. I have more than 200 publications in the fields of sensors in national and international conferences and peer reviewed journals, I am author of 3 book chapters and also hold one patent. I am a member of SPIE and SPOF.

Interest
Topics
Details

Details

  • Nationality

    Portugal
  • Centre

    Applied Photonics
  • Contacts

    +351220402301
    pedro.jorge@inesctec.pt
028
Publications

2020

iLoF: An intelligent Lab on Fiber Approach for Human Cancer Single-Cell Type Identification

Authors
Paiva, JS; Jorge, PAS; Ribeiro, RSR; Balmana, M; Campos, D; Mereiter, S; Jin, CS; Karlsson, NG; Sampaio, P; Reis, CA; Cunha, JPS;

Publication
Scientific reports

Abstract
With the advent of personalized medicine, there is a movement to develop "smaller" and "smarter" microdevices that are able to distinguish similar cancer subtypes. Tumor cells display major differences when compared to their natural counterparts, due to alterations in fundamental cellular processes such as glycosylation. Glycans are involved in tumor cell biology and they have been considered to be suitable cancer biomarkers. Thus, more selective cancer screening assays can be developed through the detection of specific altered glycans on the surface of circulating cancer cells. Currently, this is only possible through time-consuming assays. In this work, we propose the "intelligent" Lab on Fiber (iLoF) device, that has a high-resolution, and which is a fast and portable method for tumor single-cell type identification and isolation. We apply an Artificial Intelligence approach to the back-scattered signal arising from a trapped cell by a micro-lensed optical fiber. As a proof of concept, we show that iLoF is able to discriminate two human cancer cell models sharing the same genetic background but displaying a different surface glycosylation profile with an accuracy above 90% and a speed rate of 2.3 seconds. We envision the incorporation of the iLoF in an easy-to-operate microchip for cancer identification, which would allow further biological characterization of the captured circulating live cells.

2020

Femtosecond laser direct written off-axis fiber Bragg gratings for sensing applications

Authors
Viveiros, D; Amorim, VA; Maia, JM; Silva, S; Frazao, O; Jorge, PAS; Fernandes, LA; Marques, PVS;

Publication
Optics and Laser Technology

Abstract
First order off-axis fiber Bragg gratings (FBGs) were fabricated in a standard single mode fiber (SMF-28e) through femtosecond laser direct writing. A minimum offset distance between the grating and core center of 2.5 µm was found to create a multimode section, which supports two separate fiber modes (LP0,1 and LP1,1), each split into two degenerate polarization modes. The resulting structure breaks the cylindrical symmetry of the fiber, introducing birefringence (˜10-4) resulting in a polarization dependent Bragg wavelength for each mode. Based on the modal and birefringence behavior, three off-axis FBGs were fabricated with 3.0, 4.5 and 6.0 µm offsets from the core center, and then characterized in strain, temperature, and curvature. The tested off-axis FBGs exhibited a similar strain sensitivity of ~1.14 pm/µ? and a temperature sensitivity of ~12 pm/C. The curvature and orientation angle were simultaneously monitored by analyzing the intensity fluctuation and the wavelength shift of the LP1,1 Bragg resonance. A maximum curvature sensitivity of 0.53 dB/m-1 was obtained for the off-axis FBG with a 3.0 µm offset. © 2020 Elsevier Ltd

2020

Femtosecond laser-written long period fibre gratings coated with titanium dioxide for improved sensitivity

Authors
Viveiros, D; De Almeida, JMMM; Coelho, L; Vasconcelos, H; Amorim, VA; Maia, JM; Jorge, PAS; Marques, PVS;

Publication
Optical Sensing and Detection VI

Abstract

2020

Author Correction: iLoF: An intelligent Lab on Fiber Approach for Human Cancer Single-Cell Type Identification

Authors
Paiva, JS; Jorge, PAS; Ribeiro, RSR; Balmaña, M; Campos, D; Mereiter, S; Jin, C; Karlsson, NG; Sampaio, P; Reis, CA; Cunha, JPS;

Publication
Scientific Reports

Abstract

2020

Temperature Stability and Spectral Tuning of Long Period Fiber Gratings Fabricated by Femtosecond Laser Direct Writing

Authors
Viveiros, D; de Almeida, JMMM; Coelho, L; Vasconcelos, H; Maia, JM; Amorim, VA; Jorge, PAS; Marques, PVS;

Publication
Sensors

Abstract
Long period fiber gratings (LPFGs) were fabricated in a standard single mode fiber (SMF-28e) through femtosecond (fs) laser direct writing. LPFGs with longer and shorter periods were fabricated, which allows coupling from the fundamental core mode to lower and higher order asymmetric cladding modes (LP1,6 and LP1,12, respectively). For the grating periods of 182.7 and 192.5 µm, it was verified that the LP1,12 mode exhibits a TAP at approximately 1380 and 1448 nm in air and water, respectively. Characterization of the LPFGs subjected to high-temperature thermal treatment was accomplished. Fine-tuning of the resonance band’s position and thermal stability up to 600 °C was shown. The temperature sensitivity was characterized for the gratings with different periods and for different temperature ranges. A maximum sensitivity of -180.73, and 179.29 pm/°C was obtained for the two resonances of the 182.7 µm TAP LPFG, in the range between 250 and 600 °C.

Supervised
thesis

2019

Optical fibre tweezers for trapping and manipulation of sub-­micrometre particles

Author
Sandra Cristina Martins Rodrigues

Institution
UP-FCUP

2019

Development of differential optrodes for highly sensitive and reliable chemical sensing

Author
João Pedro Sampaio Mendes

Institution
UP-FCUP

2019

Fabrication of opticals Ensing devices by 3D laser micromachining

Author
Carlos Duarte Rodrigues Viveiros

Institution
UP-FCUP

2019

Fiber Laser Plasma Spectroscopy for Real-Time

Author
Miguel Fernandes Soares Ferreira

Institution
UP-FCUP

2019

Fast prototyping of advanced sensing devices using three-dimensional direct writing with femtosecond laser

Author
Vítor Alexandre Oliveira Amorim

Institution
UP-FCUP