Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Sobre

Sobre

Licenciei-me em Física Aplicada (Otíca e Lasers) pela Universidade do Minho (1996), tendo obtido o Mestrado em Lasers e Optoelectrónica no Departamento de Física da Faculdade de Ciências da Universidade do Porto (2000). Em 2006 conclui o Doutoramento em Física pela Universidade do Porto, em colaboração com o Department of Physics and Optical Sciences da University of North Carolina at Charlotte, EUA, com trabalho em sensores em fibra ótica baseados em luminescência de Quantum dots, para medição de parâmetros bioquímicos. Desde 1997 tenho estado envolvido em diversos projectos de investigação e desenvolvimento e transferência de tecnologia relacionados com tecnologia de sensores em fibra ótica, desenvolvendo novas configurações e técnicas de interrogação para sensores óticos. Presentemente e desde 2007 sou investigador Sénior do INESC TEC responsável pela equipa de sensores bioquímicos, onde exploramos o potencial das tecnologias de fibra ótica e ótica integrada em aplicações médicas e de monitorização ambiental, enquadrados em diferentes projectos de investigação e dsenvolvimento.  Sou autor de mais de 200 publicações ná àrea dos sensores, em conferências nacionais e internacionais e em jornais da especialidade, com revisão por pares. Sou autor de 3 capitulos de livro e de uma patente. Sou membro da SPIE e da SPOF.

Tópicos
de interesse
Detalhes

Detalhes

034
Publicações

2022

Unscrambling spectral interference and matrix effects in Vitis vinifera Vis-NIR spectroscopy: Towards analytical grade ‘in vivo’ sugars and acids quantification

Autores
Martins, RC; Barroso, TG; Jorge, P; Cunha, M; Santos, F;

Publicação
COMPUTERS AND ELECTRONICS IN AGRICULTURE

Abstract

2022

A Plasmonic Biosensor Based on Light-Diffusing Fibers Functionalized with Molecularly Imprinted Nanoparticles for Ultralow Sensing of Proteins

Autores
Arcadio, F; Seggio, M; Del Prete, D; Buonanno, G; Mendes, J; Coelho, LCC; Jorge, PAS; Zeni, L; Bossi, AM; Cennamo, N;

Publicação
NANOMATERIALS

Abstract
Plasmonic bio/chemical sensing based on optical fibers combined with molecularly imprinted nanoparticles (nanoMIPs), which are polymeric receptors prepared by a template-assisted synthesis, has been demonstrated as a powerful method to attain ultra-low detection limits, particularly when exploiting soft nanoMIPs, which are known to deform upon analyte binding. This work presents the development of a surface plasmon resonance (SPR) sensor in silica light-diffusing fibers (LDFs) functionalized with a specific nanoMIP receptor, entailed for the recognition of the protein human serum transferrin (HTR). Despite their great versatility, to date only SPR-LFDs functionalized with antibodies have been reported. Here, the innovative combination of an SPR-LFD platform and nanoMIPs led to the development of a sensor with an ultra-low limit of detection (LOD), equal to about 4 fM, and selective for its target analyte HTR. It is worth noting that the SPR-LDF-nanoMIP sensor was mounted within a specially designed 3D-printed holder yielding a measurement cell suitable for a rapid and reliable setup, and easy for the scaling up of the measurements. Moreover, the fabrication process to realize the SPR platform is minimal, requiring only a metal deposition step.

2022

Effects of Pulse Duration in Laser-induced Breakdown Spectroscopy

Autores
Ferreira, MFS; Silva, NA; Guimarães, D; Martins, RC; Jorge, PAS;

Publicação
U.Porto Journal of Engineering

Abstract
Laser-induced breakdown spectroscopy (LIBS) is a technique that leverages atomic emission towards element identification and quantification. While the potential of the technology is vast, it still struggles with obstacles such as the variability of the technique. In recent years, several methods have exploited modifications to the standard implementation to work around this problem, mostly focused on the laser side to increase the signal-to-noise ratio of the emission. In this paper, we explore the effect of pulse duration on the detected signal intensity using a tunable LIBS system that consists of a versatile fiber laser, capable of emitting square-shaped pulses with a duration ranging from 10 to 100 ns. Our results show that, by tuning the duration of the pulse, it is possible to increase the signal-to-noise ratio of relevant elemental emission lines, an effect that we relate with the computed plasma temperature and associated density for the ion species. Despite the limitations of the work due to the low-resolution and small range of the spectrometer used, the preliminary results pave an interesting path towards the design of controllable LIBS systems that can be tailored to increase the signal-to-noise ratio and thus be useful for the deployment of more sensitive instruments both for qualitative and quantitative purposes.

2022

Towards robust calibration models for laser-induced breakdown spectroscopy using unsupervised clustered regression techniques

Autores
Silva N.A.; Capela D.; Ferreira M.; Gonçalves F.; Lima A.; Guimarães D.; Jorge P.A.S.;

Publicação
Results in Optics

Abstract

2022

Differential Refractometric Biosensor for Reliable Human IgG Detection: Proof of Concept

Autores
Mendes, JP; Coelho, LCC; Jorge, PAS; Pereira, CM;

Publicação
BIOSENSORS-BASEL

Abstract
A new sensing platform based on long-period fiber gratings (LPFGs) for direct, fast, and selective detection of human immunoglobulin G (IgG; Mw = 150 KDa) was developed and characterized. The transducer's high selectivity is based on the specific interaction of a molecularly imprinted polymer (MIPs) design for IgG detection. The sensing scheme is based on differential refractometric measurements, including a correction system based on a non-imprinted polymer (NIP)-coated LPFG, allowing reliable and more sensitive measurements, improving the rejection of false positives in around 30%. The molecular imprinted binding sites were performed on the surface of a LPFG with a sensitivity of about 130 nm/RIU and a FOM of 16 RIU-1. The low-cost and easy to build device was tested in a working range from 1 to 100 nmol/L, revealing a limit of detection (LOD) and a sensitivity of 0.25 nmol/L (0.037 mu g/mL) and 0.057 nm.L/nmol, respectively. The sensor also successfully differentiates the target analyte from the other abundant elements that are present in the human blood plasma.

Teses
supervisionadas

2020

Development of differential optrodes for highly sensitive and reliable chemical sensing

Autor
João Pedro Sampaio Mendes

Instituição
UP-FCUP

2020

Fiber Laser Plasma Spectroscopy for Real-Time

Autor
Miguel Fernandes Soares Ferreira

Instituição
UP-FCUP

2020

Fabrication of opticals Ensing devices by 3D laser  micromachining

Autor
Carlos Duarte Rodrigues Viveiros

Instituição
UP-FCUP

2020

Optimization of LaserInduced Breakdown Spectroscopy (LIBS) for application in the cork industry

Autor
Hugo Azevedo Veloso

Instituição
UP-FCUP

2020

Laser Induced Breakdown Spectroscopy (LIBS) as an analytical tool for geological samples

Autor
Diana Faria Capela

Instituição
UP-FCUP