Cookies Policy
We use cookies to improve our site and your experience. By continuing to browse our site you accept our cookie policy. Find out More
Close
  • Menu
About

About

O. Frazão, Graduated in Physics Engineering (optoelectronics and electronics) from the University of Aveiro, Portugal. He received the Ph. D. degree in Physics from the University of Porto, Portugal in 2009. Portugal. From 1997 to 1998, he was with the Institute of Telecommunications, Aveiro. Presently, he is a Researcher at Optoelectronics and Electronic Systems Unit, INESC Porto. He has published about 200 papers, mainly in international journals and conference proceedings, and his present research interests included optical fiber sensors and optical communications. He is member of the Optical Society of America (OSA) and The International Society for Optical Engineering (SPIE).

Interest
Topics
Details

Details

009
Publications

2019

High sensitivity strain sensor based on twin hollow microspheres

Authors
Monteiro, CS; Kobelke, J; Schuster, K; Bierlich, J; Silva, SO; Frazao, O;

Publication
MICROWAVE AND OPTICAL TECHNOLOGY LETTERS

Abstract
A sensor based on 2 hollow core microspheres is proposed. Each microsphere was produced separately through fusion splicing and then joined. The resultant structure is a Fabry-Perot interferometer with multiple interferences that can be approximated to a 4-wave interferometer. Strain characterization was attained for a maximum of 1350 mu epsilon, achieving a linear response with a sensitivity of 3.39 +/- 0.04 pm/mu epsilon. The fabrication technique, fast and with no chemical hazards, as opposed to other fabrication techniques, makes the proposed sensor a compelling solution for strain measurements in hash environments.

2019

Multimode Fabry?Perot Interferometer Probe Based on Vernier Effect for Enhanced Temperature Sensing

Authors
Gomes, AD; Becker, M; Dellith, J; Zibaii, MI; Latifi, H; Rothhardt, M; Bartelt, H; Frazao, O;

Publication
Sensors (Basel, Switzerland)

Abstract
New miniaturized sensors for biological and medical applications must be adapted to the measuring environments and they should provide a high measurement resolution to sense small changes. The Vernier effect is an effective way of magnifying the sensitivity of a device, allowing for higher resolution sensing. We applied this concept to the development of a small-size optical fiber Fabry?Perot interferometer probe that presents more than 60-fold higher sensitivity to temperature than the normal Fabry?Perot interferometer without the Vernier effect. This enables the sensor to reach higher temperature resolutions. The silica Fabry?Perot interferometer is created by focused ion beam milling of the end of a tapered multimode fiber. Multiple Fabry?Perot interferometers with shifted frequencies are generated in the cavity due to the presence of multiple modes. The reflection spectrum shows two main components in the Fast Fourier transform that give rise to the Vernier effect. The superposition of these components presents an enhancement of sensitivity to temperature. The same effect is also obtained by monitoring the reflection spectrum node without any filtering. A temperature sensitivity of -654 pm/°C was obtained between 30 °C and 120 °C, with an experimental resolution of 0.14 °C. Stability measurements are also reported.

2019

Bi-core optical fiber for sensing o temperature, strain and torsion

Authors
Lobo Ribeiro, ABL; Silva, SFO; Frazao, O; Santos, JL;

Publication
MEASUREMENT SCIENCE AND TECHNOLOGY

Abstract
Bi-core optical fiber structures are studied for applications in sensing. In this paper, an analysis is performed on the spectral characteristics of light propagating in these fibers with central launching core illumination from a standard single mode fiber. Reflective and transmissive configurations are addressed. The characteristics of a reflective bi-core fiber structure for measurement of strain, temperature and absolute value of torsion are investigated and highlights for further research are presented.

2018

Temperature Compensated Strain Sensor Based on Long Period Gratings and Microspheres

Authors
Ascorbe, J; Coelho, L; Santos, JL; Frazao, O; Corres, JM;

Publication
IEEE Photonics Technology Letters

Abstract

2018

Temperature independent refractive index measurement using a fiber Bragg grating on abrupt tapered tip

Authors
Gomes, AD; Silveira, B; Warren Smith, SC; Becker, M; Rothhardt, M; Frazao, O;

Publication
Optics and Laser Technology

Abstract
A fiber Bragg grating was inscribed in an abrupt fiber taper using a femtosecond laser and phase-mask interferometer. The abrupt taper transition allows to excite a broad range of guided modes with different effective refractive indices that are reflected at different wavelengths according to Bragg's law. The multimode-Bragg reflection expands over 30 nm in the telecom-C-band. This corresponds to a mode-field overlap of up to 30% outside of the fiber, making the device suitable for evanescent field sensing. Refractive index and temperature measurements are performed for different reflection peaks. Temperature independent refractive index measurements are achieved by considering the difference between the wavelength shifts of two measured reflection peaks. A minimum refractive index sensitivity of 16 ± 1 nm/RIU was obtained in a low refractive index regime (1.3475–1.3720) with low influence of temperature (-0.32 ± 0.06 pm/°C). The cross sensitivity for this structure is 2.0 × 10-5 RIU/°C. The potential for simultaneous measurement of refractive index and temperature is also studied. © 2017 Elsevier Ltd

Supervised
thesis

2017

Optical Characterization of a Magnetostrictive Microcantilever based Sensor

Author
Beatriz Maria Machado Silveira

Institution
UP-FCUP

2016

Optical Sensors Based on Fabry-Perot Interferometry

Author
Catarina da Silva Monteiro

Institution
UP-FCUP

2016

Polymer fiber based sensors

Author
Miguel Fernandes Soares Ferreira

Institution
UP-FCUP

2016

Sensors based on Taper Device for Knot Configuration

Author
André Gomes

Institution
UP-FCUP

2016

Study of Polyvinylidene Fluoride in Fiber Optics sensing technology.

Author
António Vaz Rodrigues

Institution
UP-FCUP