Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About
Download Photo HD

About

Manuel F. Silva was born in April 11, 1970. He graduated, received the MSc. and the PhD. degrees in electrical and computer engineering from the Faculty of Engineering of the University of Porto, Portugal, in 1993, 1997 and 2005, respectively. Presently he is Adjunct Professor at the Institute of Engineering of the Polytechnic Institute of Porto, Department of Electrical Engineering. His research focuses on modelling, simulation, robotics, multi-legged walking robots, climbing robots, biological inspired robots, control and education in robotics and control.

Interest
Topics
Details

Details

012
Publications

2021

Autonomous wheelchair for patient’s transportation on healthcare institutions

Authors
Baltazar, AR; Petry, MR; Silva, MF; Moreira, AP;

Publication
SN Applied Sciences

Abstract
AbstractThe transport of patients from the inpatient service to the operating room is a recurrent task in a hospital routine. This task is repetitive, non-ergonomic, time consuming, and requires the labor of patient transporters. In this paper is presented a system, named Connected Driverless Wheelchair, that can receive transportation requests directly from the hospital information management system, pick up patients at their beds, navigate autonomously through different floors, avoid obstacles, communicate with elevators, and drop patients off at the designated operating room. As a result, a prototype capable of transporting patients autonomously in hospital environments was obtained. Although it was impossible to test the final developed system at the hospital as planned, due to the COVID-19 pandemic, the extensive tests conducted at the robotics laboratory facilities, and our previous experience in integrating mobile robots in hospitals, allowed to conclude that it is perfectly prepared for this integration to be carried out. The achieved results are relevant since this is a system that may be applied to support these types of tasks in the future, making the transport of patients more efficient (both from a cost and time perspective), without unpredictable delays and, in some cases, safer.

2021

The MopBot Cleaning Robot – An EPS@ISEP 2020 Project

Authors
Tuluc, C; Verberne, F; Lasota, S; de Almeida, T; Malheiro, B; Justo, J; Ribeiro, C; Silva, MF; Ferreira, P; Guedes, P;

Publication
Educating Engineers for Future Industrial Revolutions - Advances in Intelligent Systems and Computing

Abstract

2021

Design, Modeling, and Simulation of a Wing Sail Land Yacht

Authors
Tinoco, V; Malheiro, B; Silva, MF;

Publication
Applied Sciences

Abstract
Autonomous land yachts can play a major role in the context of environmental monitoring, namely, in open, flat, windy regions, such as iced planes or sandy shorelines. This work addresses the design, modeling, and simulation of a land yacht probe equipped with a rigid free-rotating wing sail and tail flap. The wing was designed with a symmetrical airfoil and dimensions to provide the necessary thrust to displace the vehicle. Specifically, it proposes a novel design and simulation method for free rotating wing sail autonomous land yachts. The simulation relies on the Gazebo simulator together with the Robotic Operating System (ROS) middleware. It uses a modified Gazebo aerodynamics plugin to generate the lift and drag forces and the yawing moment, two newly created plugins, one to act as a wind sensor and the other to set the wing flap angular position, and the 3D model of the land yacht created with Fusion 360. The wing sail aligns automatically to the wind direction and can be set to any given angle of attack, stabilizing after a few seconds. Finally, the obtained polar diagram characterizes the expected sailing performance of the land yacht. The described method can be adopted to evaluate different wing sail configurations, as well as control techniques, for autonomous land yachts.

2021

Smart Bicycle Probe – An EPS@ISEP 2020 Project

Authors
Boularas, M; Szmytke, Z; Smith, L; Isik, K; Ruusunen, J; Malheiro, B; Justo, J; Ribeiro, C; Silva, MF; Ferreira, P; Guedes, P;

Publication
Educating Engineers for Future Industrial Revolutions - Advances in Intelligent Systems and Computing

Abstract

2021

Advances in Agriculture Robotics: A State-of-the-Art Review and Challenges Ahead

Authors
Oliveira, LFP; Moreira, AP; Silva, MF;

Publication
Robotics

Abstract
The constant advances in agricultural robotics aim to overcome the challenges imposed by population growth, accelerated urbanization, high competitiveness of high-quality products, environmental preservation and a lack of qualified labor. In this sense, this review paper surveys the main existing applications of agricultural robotic systems for the execution of land preparation before planting, sowing, planting, plant treatment, harvesting, yield estimation and phenotyping. In general, all robots were evaluated according to the following criteria: its locomotion system, what is the final application, if it has sensors, robotic arm and/or computer vision algorithm, what is its development stage and which country and continent they belong. After evaluating all similar characteristics, to expose the research trends, common pitfalls and the characteristics that hinder commercial development, and discover which countries are investing into Research and Development (R&D) in these technologies for the future, four major areas that need future research work for enhancing the state of the art in smart agriculture were highlighted: locomotion systems, sensors, computer vision algorithms and communication technologies. The results of this research suggest that the investment in agricultural robotic systems allows to achieve short—harvest monitoring—and long-term objectives—yield estimation.

Supervised
thesis

2020

Aplicação de robôs colaborativos em tratamentos fisiátricos

Author
DANIELA BARROS MARTINS

Institution
IPP-ISEP

2020

Modelação e Simulação de um Veleiro Terrestre com Vela Asa

Author
VÍTOR DANIEL VELOSO TINOCO

Institution
IPP-ISEP

2020

Autonomous Wheelchair to support Patients of Hospital Services

Author
André Rodrigues Baltazar

Institution
UP-FEUP

2020

Simulação de um Sistema Robótico de Co-transporte

Author
FREDERICO MARQUES TEIXEIRA

Institution
IPP-ISEP

2020

Robô para Emulação de Tarefas de Pintura Manual

Author
TIAGO FERRAZ LARANJA PONTES

Institution
IPP-ISEP