Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Sobre

Sobre

Manuel F. Silva nasceu a 11 de abril de 1970. Obteve os graus de Licenciado, Mestre e Doutor em Engenharia Eletrotécnica e de Computadores pela Faculdade de Engenharia da Universidade do Porto, em 1993, 1997 e 2005, respetivamente. Atualmente é Professor Coordenador no Departamento de Engenharia Eletrotécnica do Instituto Superior de Engenharia do Porto e Investigador Principal do Centro de Robótica na Indústria e Sistemas Inteligentes do INESC TEC. É autor de mais de 150 publicações em revistas e conferências internacionais e tem estado envolvido em vários projetos de I&D. Também tem estado ativamente envolvido na organização de várias conferências internacionais, integra a equipa de gestão da Associação CLAWAR e foi Presidente da Sociedade Portuguesa de Robótica. Os seus interesses de investigação centram-se em modelação, simulação, robótica industrial, robótica móvel, robótica de inspiração biológica e educação em engenharia.

Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    Manuel Santos Silva
  • Cargo

    Coordenador de Centro
  • Desde

    03 janeiro 2012
015
Publicações

2024

Vision Robotics for the Automatic Assessment of the Diabetic Foot

Autores
Mesquita R.; Costa T.; Coelho L.; Silva M.F.;

Publicação
Lecture Notes in Mechanical Engineering

Abstract
Diabetes, a chronic condition affecting millions of people, requires ongoing medical care and treatment, which can place a significant financial burden on society, directly and indirectly. In this paper we propose a vision-robotics system for the automatic assessment of the diabetic foot, one the exams used for the disease management. We present and discuss various computer vision techniques that can support the core operation of the system. U-Net and Segnet, two popular convolutional network architectures for image segmentation are applied in the current case. Hardcoded and machine learning pipelines are explained and compared using different metrics and scenarios. The obtained results show the advantages of the machine learning approach but also point to the importance of hard coded rules, especially when well know areas, such as the human foot, are the systems’ target. Overall, the system achieved very good results, paving the way to a fully automated clinical system.

2024

The CrossLog System Concept and Architecture

Autores
Silva M.F.; Rebelo P.M.; Sobreira H.; Ribeiro F.;

Publicação
Lecture Notes in Mechanical Engineering

Abstract
Logistics chains are being increasingly developed due to several factors, among which the exponential growth of e-commerce. Crossdocking is a logistics strategy used by several companies from varied economic sectors, applied in warehouses and distribution centres. In this context, it is the objective of the “CrossLog – Automatic Mixed-Palletizing for Crossdocking Logistics Centers” Project, to investigate and study an automated and collaborative crossdocking system, capable of moving and managing the flow of products within the warehouse in the fastest and safest way. In its scope, this paper describes the concept and architecture envisioned for the crossdocking system developed in the scope of the CrossLog Project. One of its main distinguishing characteristics is the use of Autonomous Mobile Robots for performing much of the operations traditionally performed by human operators in today’s logistics centres.

2024

A Study of Virtual Reality Applied to Welder Training

Autores
Couto M.; Petry M.R.; Silva M.F.;

Publicação
Lecture Notes in Networks and Systems

Abstract
Welding is a challenging, risky, and time-consuming profession. Recently, there has been a documented shortage of trained welders, and as a result, the market is pushing for an increase in the rate at which new professionals are trained. To address this growing demand, training institutions are exploring alternative methods to train future professionals. The emergence of virtual reality technologies has led to initiatives to explore their potential for welding training. Multiple studies have suggested that virtual reality training delivers comparable, or even superior, results when compared to more conventional approaches, with shorter training times and reduced costs in consumables. This paper conducts a comprehensive review of the current state of the field of welding simulators. This involves exploring the different types of welding simulators available and evaluating their effectiveness and efficiency in meeting the learning objectives of welding training. The aim is to identify gaps in the literature, suggest future research directions, and promote the development of more effective and efficient welding simulators in the future. The research also seeks to develop a categorical system for evaluating and comparing welding simulators. This system will enable a more systematic and objective analysis of the features and characteristics of each simulator, identifying the essential characteristics that should be included in each level of classification.

2024

Line Fitting-Based Corner-Like Detector for 2D Laser Scanners Data

Autores
Sousa, RB; Placido Sobreira, HM; Silva, MF; Moreira, AP;

Publicação
10th International Conference on Automation, Robotics and Applications, ICARA 2024, Athens, Greece, February 22-24, 2024

Abstract
The extraction of geometric information from the environment may be of interest to localisation and mapping algorithms. Existent literature on extracting geometric features from 2D laser data focuses mainly on detecting lines. Regarding corners, most methodologies use the intersection of line segment features. This paper presents a feature extraction algorithm for corner-like points in the 2D laser scan. The proposed methodol-ogy defines arrival and departure neighbourhoods around each scan point and performs local line fitting evaluated in multiple distance-based scales. Then, a set of indicators based on line fitting error, the angle between arrival and departure lines, and consecutive observation of the same keypoint across different scales determine the existence of a corner-like feature. The experiments evaluated the corner-like features regarding their relative position and observability, achieving standard deviations on the relative position lower than the sensor noise and visibility ratios higher than 75% with very low false positives rates. © 2024 IEEE.

2023

Modelling and Simulation of Robotic Luggage Transport at OPO Airport

Autores
Pereira, M; Silva, MF; Siqueira, A;

Publicação
ROBOTICS IN NATURAL SETTINGS, CLAWAR 2022

Abstract
Due to the lack of unskilled labour force that has been verified in the last years, several processes have been automated, both at industrial and services level. In terms of logistics tasks and transport of materials, it is increasingly common to use mobile robots, given the advantages that this equipment presents. This is also the case in airports, where the adoption of these vehicles to perform several tasks is becoming visible. Considering the possibility of using mobile robots to transport luggage at the Francisco Sa, Carneiro Airport, this paper presents the development of a simulation model and the analysis of several scenarios, with different number of vehicles, in order to understand the time that passengers would have to wait for their luggage, in case this task is automated. The final objective is to determine the number of vehicles required and the changes that need to be made to the airport's operation in order to ensure a level of service identical to (or better than) that currently achieved, with these operations being carried out by human operators.

Teses
supervisionadas

2023

Automatização do Processo Manual de Pesagem de Pigmentos

Autor
DIOGO GONÇALO LIMA DE FREITAS

Instituição
IPP-ISEP

2023

Proof of Concept for a Visualization Interface into the Intralogistics Process

Autor
STÉPHANE CASTANHEIRA OLIVEIRA

Instituição
IPP-ISEP

2023

Virtual Reality Applied to Welder Training

Autor
MANUEL BENTO BARBOSA DO COUTO

Instituição
IPP-ISEP

2023

Confronto de cadência MES com SAP e melhoria de processos

Autor
ANA CATARINA REMA OLIVEIRA

Instituição
IPP-ISEP

2023

Quadruped robot for ultra-precise spraying tasks

Autor
Maria Silva Lopes

Instituição
UP-FEUP