Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

I'm a fast learner software engineer, always looking to expand my knowledge in new technologies and with great interest in science (computer science and engineering, robotics, biotechnology, space exploration, among others).

My main research areas are augmented reality, 3D perception, computer vision, safety critical systems, assembly automation, localization and mapping of autonomous vehicles among many others within the industrial and mobile robotics fields.

Interest
Topics
Details

Details

  • Name

    Carlos Miguel Costa
  • Role

    Researcher
  • Since

    10th February 2014
017
Publications

2025

Dual-Arm Manipulation of a T-Shirt from a Hanger for Feeding a Hem Sewing Machine

Authors
Almeida, F; Leão, G; Costa, M; Rocha, D; Sousa, A; da Silva, LG; Rocha, F; Veiga, G;

Publication
Proceedings of the International Conference on Informatics in Control, Automation and Robotics

Abstract
The textile industry is experiencing rapid advancement, reflected in the adoption of innovative and efficient manufacturing techniques. The automation of clothing sewing systems has the potential to reduce the allocation of repetitive tasks to operators, freeing them for more value-added operations. There are several machines on the market that automatically sew the bottom hem of T-shirts, a key component of the garment that fulfills both functional and aesthetic purposes. However, most of them require the fabric to be positioned manually by an operator. To address this issue, this work presents a solution to automate the process of feeding a T-shirt into a SiRUBA sewing machine using a YuMi dual-arm robot. In this scenario, the T-shirt arrives at the workstation with the main front and back pieces of cloth sewn together, seams facing out, and with no sleeves yet. This setup starts by turning the garment inside out with the aid of an automated hanger, ensuring that the seams are facing inward (as the machine requires), and then using the dual-arm robot to feed the garment into the sewing machine. With our approach, the feeding and hemming process took less than 35 seconds, with a feeding success rate of 98%. Therefore, this work can serve as a steppingstone towards more efficient automated sewing systems within the garment production industry.

2024

Inspection of Part Placement Within Containers Using Point Cloud Overlap Analysis for an Automotive Production Line

Authors
Costa, CM; Dias, J; Nascimento, R; Rocha, C; Veiga, G; Sousa, A; Thomas, U; Rocha, L;

Publication
FLEXIBLE AUTOMATION AND INTELLIGENT MANUFACTURING: ESTABLISHING BRIDGES FOR MORE SUSTAINABLE MANUFACTURING SYSTEMS, FAIM 2023, VOL 1

Abstract
Reliable operation of production lines without unscheduled disruptions is of paramount importance for ensuring the proper operation of automated working cells involving robotic systems. This article addresses the issue of preventing disruptions to an automotive production line that can arise from incorrect placement of aluminum car parts by a human operator in a feeding container with 4 indexing pins for each part. The detection of the misplaced parts is critical for avoiding collisions between the containers and a high pressure washing machine and also to avoid collisions between the parts and a robotic arm that is feeding parts to a air leakage inspection machine. The proposed inspection system relies on a 3D sensor for scanning the parts inside a container and then estimates the 6 DoF pose of the container followed by an analysis of the overlap percentage between each part reference point cloud and the 3D sensor data. When the overlap percentage is below a given threshold, the part is considered as misplaced and the operator is alerted to fix the part placement in the container. The deployment of the inspection system on an automotive production line for 22 weeks has shown promising results by avoiding 18 hours of disruptions, since it detected 407 containers having misplaced parts in 4524 inspections, from which 12 were false negatives, while no false positives were reported, which allowed the elimination of disruptions to the production line at the cost of manual reinspection of 0.27% of false negative containers by the operator.

2024

COGNITIVE WORKLOAD AND FATIGUE IN A HUMAN-ROBOT COLLABORATIVE ASSEMBLY WORKSTATION: A PILOT STUDY

Authors
Joana Santos; Mariana Ferraz; Ana Pinto; Luis F. Rocha; Carlos M. Costa; Ana C. Simões; Klass Bombeke; M.A.P. Vaz;

Publication
International Symposium on Occupational Safety and Hygiene: Proceedings Book of the SHO2023

Abstract

2023

Object Segmentation for Bin Picking Using Deep Learning

Authors
Cordeiro, A; Rocha, LF; Costa, C; Silva, MF;

Publication
ROBOT2022: FIFTH IBERIAN ROBOTICS CONFERENCE: ADVANCES IN ROBOTICS, VOL 2

Abstract
Bin picking based on deep learning techniques is a promising approach that can solve several analytical methods problems. These systems can provide accurate solutions to bin picking in cluttered environments, where the scenario is always changing. This article proposes a robust and accurate system for segmenting bin picking objects, employing an easy configuration procedure to adjust the framework according to a specific object. The framework is implemented in Robot Operating System (ROS) and is divided into a detection and segmentation system. The detection system employs Mask R-CNN instance neural network to identify several objects from two dimensions (2D) grayscale images. The segmentation system relies on the point cloud library (PCL), manipulating 3D point cloud data according to the detection results to select particular points of the original point cloud, generating a partial point cloud result. Furthermore, to complete the bin picking system a pose estimation approach based on matching algorithms is employed, such as Iterative Closest Point (ICP). The system was evaluated for two types of objects, knee tube, and triangular wall support, in cluttered environments. It displayed an average precision of 79% for both models, an average recall of 92%, and an average IOU of 89%. As exhibited throughout the article, this system demonstrates high accuracy in cluttered environments with several occlusions for different types of objects.

2023

Bin Picking for Ship-Building Logistics Using Perception and Grasping Systems

Authors
Cordeiro, A; Souza, JP; Costa, CM; Filipe, V; Rocha, LF; Silva, MF;

Publication
ROBOTICS

Abstract
Bin picking is a challenging task involving many research domains within the perception and grasping fields, for which there are no perfect and reliable solutions available that are applicable to a wide range of unstructured and cluttered environments present in industrial factories and logistics centers. This paper contributes with research on the topic of object segmentation in cluttered scenarios, independent of previous object shape knowledge, for textured and textureless objects. In addition, it addresses the demand for extended datasets in deep learning tasks with realistic data. We propose a solution using a Mask R-CNN for 2D object segmentation, trained with real data acquired from a RGB-D sensor and synthetic data generated in Blender, combined with 3D point-cloud segmentation to extract a segmented point cloud belonging to a single object from the bin. Next, it is employed a re-configurable pipeline for 6-DoF object pose estimation, followed by a grasp planner to select a feasible grasp pose. The experimental results show that the object segmentation approach is efficient and accurate in cluttered scenarios with several occlusions. The neural network model was trained with both real and simulated data, enhancing the success rate from the previous classical segmentation, displaying an overall grasping success rate of 87.5%.