Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

2021

Carbon Policy as a Strategy to Jointly Address Climate Change, Prevent Wildfires and Biodiversity Loss: A Portugal Case Study

Authors
Pacheco, R; Claro, J;

Publication
International Conference on Environmental Science and Applications - Proceedings of the 2nd International Conference on Environmental Science and Applications (ICESA'21)

Abstract

2021

Marine origin materials on biomaterials and advanced therapies to cartilage tissue engineering and regenerative medicine

Authors
Carvalho, DN; Reis, RL; Silva, TH;

Publication
BIOMATERIALS SCIENCE

Abstract
The body's self-repair capacity is limited, including injuries on articular cartilage zones. Over the past few decades, tissue engineering and regenerative medicine (TERM) has focused its studies on the development of natural biomaterials for clinical applications aiming to overcome this self-therapeutic bottleneck. This review focuses on the development of these biomaterials using compounds and materials from marine sources that are able to be produced in a sustainable way, as an alternative to mammal sources (e.g., collagens) and benefiting from their biological properties, such as biocompatibility, low antigenicity, biodegradability, among others. The structure and composition of the new biomaterials require mimicking the native extracellular matrix (ECM) of articular cartilage tissue. To design an ideal temporary tissue-scaffold, it needs to provide a suitable environment for cell growth (cell attachment, proliferation, and differentiation), towards the regeneration of the damaged tissues. Overall, the purpose of this review is to summarize various marine sources to be used in the development of different tissue-scaffolds with the capability to sustain cells envisaging cartilage tissue engineering, analysing the systems displaying more promising performance, while pointing out current limitations and steps to be given in the near future.

2021

Mach-Zehnder Interferometer-Based Evanescent Refractometer Inscribed at the Surface of Eagle2000 by Femtosecond Laser Writing

Authors
Amorim, VA; Maia, JM; Viveiros, D; Marques, PVS;

Publication
IEEE SENSORS JOURNAL

Abstract
The potential of evanescent Mach-Zehnder interferometers, embedded in Eagle2000 substrates, as refractive index sensors was assessed. For that, femtosecond laser direct writing and wet etching were used to fabricate and expose the sensing arm at the surface of the glass substrate, while keeping the reference arm buried. From the analysis of the structures' spectral response, we found that the wavelength shift of the different order peaks increased greatly for refractive indices nearing that of the glass, indicating a greater overlap between the guided mode's evanescent field and the external medium. Therefore, a maximum sensitivity of 10271 nm/RIU was obtained at a refractive index of 1.491. The sensitivity in the refractive index range of water-based solutions was, on the other hand, limited to 446 +/- 39 nm/RIU. Due to the geometry of the device, applications with films deposited at the surface of the substrate and PDMS based microfluidic channels can be explored.

2021

Turn Around Point Long Period Fiber Gratings With Coupling to Asymmetric Cladding Modes Fabricated by a Femtosecond Laser and Coated With Titanium Dioxide

Authors
Viveiros, D; de Almeida, JMMM; Coelho, L; Vasconcelos, H; Maia, JM; Amorim, VA; Jorge, PAS; Marques, PVS;

Publication
JOURNAL OF LIGHTWAVE TECHNOLOGY

Abstract
A detailed study of turn around point (TAP) long period fiber gratings (LPFGs) with coupling to the asymmetric cladding modes of a standard single-mode fiber (SMF-28e), fabricated by femtosecond (fs) laser direct writing was realized. The entire fabrication process, including the coating with different titanium dioxide (TiO2) film thicknesses of LPFGs and the corrections needed to achieve coated devices operating precisely in the TAP condition with coupling to the asymmetric cladding modes, was addressed. The significant fabrication details are also given, such as inscription periods, shape and localization of the refractive index modifications across the core. The fabrication process described allows the optimization of the LPFGs sensitivity in regards to the surrounding refractive index (SRI). Optimization of the writing parameters to obtain gratings working at the TAP for two different media surrounding the fiber (water and air) was achieved. It was demonstrated that for a grating period of 191.8 mu m, the LP1,12 mode exhibits a TAP at 1442.7 nm in air, and for a period of 192.5 mu m, the same mode exhibits a TAP at 1448.6 nm in water. The LPFGs operating at the TAP in air and water were coated with 10, 20, and 30 nm thin TiO2 film thicknesses and the spectral behavior characterized. The wavelength sensitivity to the surrounding refractive index (SRI) was assessed in the range between 1.3700 to 1.4120, and a maximum sensitivity of similar to 8051.4 nm/RIU was measured for the 192.5 mu m LPFG coated with a 30 nm thick TiO2 film.

2021

BELBIC Based Step-Down Controller Design Using PSO

Authors
Coelho, JP; César, MB; Gonçalves, J;

Publication
Optimization, Learning Algorithms and Applications - First International Conference, OL2A 2021, Bragança, Portugal, July 19-21, 2021, Revised Selected Papers

Abstract
This article presents a comparison between a common type III controller and one based on a brain emotional learning paradigm (BELBIC) parameterized using a particle swarm optimization algorithm (PSO). Both strategies were evaluated regarding the set-point accuracy, disturbances rejection ability and control effort of a DC-DC buck converter. The simulation results suggests that, when compared to the common controller, the BELBIC leads to an increase in both set-point tracking and disturbances rejection ability while reducing the dynamics of the control signal.

2021

A Simple Procedure to Estimate Reference Evapotranspiration during the Irrigation Season in a Hot-Summer Mediterranean Climate

Authors
Rodrigues, GC; Braga, RP;

Publication
SUSTAINABILITY

Abstract
The Food and Agricultural Organization of the United Nations (FAO) Penman-Monteith (PM) method is widely regarded as the most effective reference evapotranspiration (ETo) estimator; however, it requires a wide range of data that may be scarce in some rural regions. When feasible relative humidity, solar radiation and wind speed data are unavailable, a temperature-based method may be useful to estimate ETo and provide suitable data to support irrigation management. This study has evaluated the accuracy of two ETo estimations methods: (1) a locally and monthly adjusted Hargreaves-Samani (HS) equation; (2) a simple procedure that only uses maximum temperature and a temperature adjustment coefficient (MaxTET). Results show that, if a monthly adjusted radiation adjustment coefficient (k(Rs)) is calibrated for each site, acceptable ETo estimations (RMSE and R-2 equal to 0.79 for the entire region) can be achieved. Results also show that a procedure to estimate ETo based only on maximum temperature performs acceptably, when compared with ETo estimation using PM equation (RMSE = 0.83 mm day(-1) and R-2 = 0.77 for Alentejo). When comparing these results with the ones attained when adopting a monthly adjusted HS method, the MaxTET procedure proves to be an accurate ETo estimator. Results also show that both methods can be used to estimate ETo when weather data are scarce.

  • 993
  • 4212